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1.0 INTRODUCTION AND SUMMARY

The objective of this 3 year study is the further development of Microwave

and Millimeter Wave signal Processing Devices based on Epitaxial Ferrites grown

on insulating non magnetic substrates. Analog signal processing based on ob-

lique reflection of magnetostatic waves from ion implanted periodic arrays in

Epitaxial Yttrium Iron Garnet is of interest as well as the development of

Millimeter Wave non-reciprocal components based on Epitaxial Ferrites. This

final report summarizes the results of viable realizations of these goals.

Transversal filters at microwave frequencies based on oblique reflection

of MSW from arrays of ion implanted zones has been theoretically modeled and

experimentally tested. Existing models for transducer radiation characteristics

and magnetic wave propagation properties have been applied in conjunction with

a theory for the effects of implantation on wave propagation to predict experi-

mental device performance. Synthesis procedures that allow realization of

desired filter characteristics are presented and demonstrated in the design of

experimental filters. Novel reflector geometries are discussed and experimen-

tally compared to conventional schemes. Unidirectional transducer are theoreti-

cally discussed and experimentally varified as they apply to contoured reflective

arrays.

Theoretical and experimental studies of Millimeter Wave non-reciprocal

devices based on Epitaxial Ferrites grown on dielectric substrates which serve

as Image Waveguides, has shown substantial progress. Low loss Image Waveguides

have been demonstrated on substrates suitable for Epitaxial growth. Utilizing

Epitaxial YIG, field displacement isolation has been demonstrated with forward/

reverse isolation of > 20db, thus demonstrating the promise of this technology.

i , ,
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CHAPTER 2

MAGNETOSTATIC ION-IMPLANTED REFLECTIVE ARRAY THEORY

2.1 Dispersion Relation and Transducer Modeling

2.1.1 Device Configuration Requirements

There are three commonly used bias field orientations

that result in "principal mode" operation of a magnetostatic

wave device. All of these are characterized by wave

propagation vectors that are exclusively normal to or

parallel to the bias field direction, as shown in Figure 2.1.

Magnetostatic surface waves (MSSW) were chosen for use

in the normal incidence array experiments for three reasons:

I) Of the three MSW modes, MSSW's exhibit the lowest

overall insertion losses (2.1). These losses can be

categorized into propagation attenuation, transducer

conversion efficiency, and driving point mismatch.

For like film thicknesses, path losses are lower for

MSSW's than for volume waves corresponding to the

smaller propagation delays. Forward transduction

efficiencies are higher for MSSW's in response to the

proximity of the launching structures to the ferrite

film surface where MSSW energy concentrations are

maximum. For a typical unmatched device, driving point

mismatch is small and about the same for all three modes.
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Figure 2.1. Bias field configurations and associated
magnetic modes.
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2) With MSSWs, larger implanted bar edge reflectivities are

expected, since typical implants only penetrate to

about 2% of the film thickness. This is sufficient to

significantly interrupt the surface bound MSSW's, but

would have comparatively less effect on volume energy

concentrations such as MSFVW and MSBVW.

3) Earlier experiments indicate that conversion to vertical

standing waves occurs when MSFVWs were used in

conjunction with etched groove reflectors (2.2). This

problem has not appeared in experiments utilizing MSSW's

with etched grooves (2.3,2.4,2.5,2.6, 2.7).

MSFVW's were used In the oblique Incidence implanted

array experiments, since the isotropic character of MSFVW

propagation allows transversal reflection without requiring a

mode change. The possibility of oblique reflection of MSSW

into MSBVW and visa versa was experimentally investigated,

but no significant m-de conversion was observed.

2.1.2 Magnetostatic Waves

Magnetostatic waves propagate via the ordered

electronic spin structure in a ferrite that is biased to the

point of saturation by an external magnetic field. Under the

influence of a saturating bias field, exchange forces are

overcome, and a dynamic equilibrium is reached in which all

magnetic moments of the outermost electrons in the ferric

ions align to form a fixed angle with the bias field. To



maintain this dynamic equilibrium, the magnetic spin moments

precess around the bias field producing a mechanical torque

which just balances the magnetic torque. Alignment of the

spins in this manner creates a significant mutual magnetic

flux linkage among the spins of neighboring ferric ions.

Since this flux linkage is the principal mechanism for energy

transfer in a magnetostatic wave, the magnetic component of

the wave is much larger than the electric counterpart. This

justifies the magnetostatic approximation originally

introduced by Mercereau and Feynman (2.8),

curl(h) = J

curl(e) = - (b (2.1)at
dlv(d) = 0

dlv(b) = 0

in which displacement currents are considered negligible.

Small letters signify the small signal, time-varying fields

associated with the magnetostatic wave. Except in metalized

regions such as transducer filaments, conduction currents are

zero and Ampere's Law becomes,

curl(h) = 0, (2.2)

allowing the use of a scalar magnetic potential to define the

magnetic field according to Helmholtz's theorem,

h = grad{V ). (2.3)

Combining this with the constitutive relation and the

N .N
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solenoidal law yields the magnetostatic equation,

div[I.grad(V }] = 0. (2.4a)

Before this equation can be addressed In the ferrite regions,

the permeability tensor must be evaluated for the desired

bias field orientations.

2.1.3 The Polder Tensor

The following discussion deals with microscopic

electronic spins for which the Gaussian system of units is

used for convenience. The result is a dimensionless relative

permeability tensor equally applicable in the SI system of

units used in the wave solutions.

A derivation of the permeability tensor for a biased

ferrite was first introduced by Polder (2.9) in 1949. Several

simplifying assumptions are necessary for this model:

" The magnetostatic bias field is assumed to be uniform

and sufficient to saturate the ferrite. This condition

is particularly easy to satisfy in the planar epitaxial

films used in this work.

" Effects of magnetocrystaline anisotrophy are considered

negligible in the presence of the saturating bias field.

The validity of this assumption Is supported by more

general analyses done by others (2.10).

" The ferric ions possessing the involved magnetic moments

occupy sites that are surrounded by oxygen Ions which



7

H

7 -" dm
wao dt
-" -- mxH

dt

Figure 2.2. Torque balance on an electronic spin in a
uniform magnetic field.
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serve to isolate them and minimize the effects of

exchange interaction. Thus, exchange contributions are

assumed negligible. Calculations by others, c.f. Sodha

and Srivastava (2.10), show that this approximation is

accurate for magnetotostatic wavelengths greater than

about 0.6 um, which is well within the realm of this

work.

e Fields associated with the magnetostatic wave are

assumed to be small in comparison to the static bias

related fields.

On a molecular level, the constituents are immersed in

a vacuum so that the magnetic induction is the same as the

magnetic field intensity. The torque on a magnetic dipole,

m, in a uniform magnetic field, B, in vacuo Is (Figure 2.2),

T = m x B = m x H. (2.5)

V To maintain dynamic equilibrium, the dipole precesses around

the bias field, causing its total angular momentum to vary

with time, resulting In a mechanical torque,

T= -P (2.6)
dt

Under equl1ibrium, these two torques must balance each other,

- qp + m x H = 0. (2.7a)

dt

Total angular momentum and magnetic dipole moment are related



9

by the gyromagnetic ratio,

m = -IyIp (2.8a)

where, y = ge/2mc (2.9)

g = Lande g-factor
e = electronic charge
m = electronic mass
c = speed of light in a vacuum

The Lande g-factor accounts for spin-orbit interaction set up

by the nuclear field. It assumes a value of I for pure

orbital momentum and 2 for pure spin. Ordinarily, both

ortital momentum and spin would come into play, placing g

somewhere between these extremes. However in a magnetic

oxide, such as YIG, the proximity of the oxygen ions that

surround its contributive ferric Ions creates a strong

crystaline field interaction that prevents the orbital motion

from being significantly altered by the bias field, such that

angular momentum doesn't appreciably participate in the

magnetic moment. This "quenching" of the orbital angular

momentum (2.11, 2.12) results in a gyromagnetic ratio (cgs),

IyI z 17.6 Mrad/Oe. (2.8b)

With this, the torque balance (2.7a) can be expressed

entirely as a function of magnetic quantities,

dm + Iyl(m x H) = 0. (2.7b)

Averaging over a volume with a maximum lineal dimension that

is small compared to a magnetostatic wavelength (so H can be
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considered uniform) converts this torque balance to a

macroscopic form appropriate to the calculation of the

material permeability tensor.

N N
d n=1 n=l n
d (-n=- + IyIl I x H) = 0 (2.7c)

Using the definition of magnetization,

N
Emn

M A n!l , (2.10)

AV

this simplifies to,

dMd + tyI{M x H) = 0. (2.7d)

In the absence of magnetostatic excitation, the

magnetization must be a constant, equal In magnitude to the

saturation magnetization, M , and directed along the Internal0

bias field, H 0 . Otherwise, the radiation that would result

from the time varying B and H fields,

B - H = 4vM (2.11)

would run the system down. As a magnetostatic wave traverses

a point in the sample, the tip of the local magnetization

moves about on a sphere centered at the point, as

demonstrated by equation (2.12).

,.M _. 2  dM

2 (t ° M = -21YI(MxH),M = 0 (2.12)
dt dt
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The total fields consist of both constant bias related

components and small signal magnetostatic time harmonics,

H = H + I hn exp{J2 n ft(

= ° + m, jmft](2.13)

;= M 0 + I m n expfj2wnfit)

Substituting these forms (2.13) into the macroscopic torque

balance (2.7d) and requiring the linearly Independent time

variations to separately satisfy the equality imposes two

conditions,
M x H = 0 (2.14a)

n-1
j2nfimn = IyI(M0xhn+mnXHo+I [ mLxhnL3 (2.14b)

t=1

n = 1,2,3......

The first of these equations (2.14a) reiterates the

colinearity of the bias field and the saturation

magnetization. Subject to the small signal model,

subharmonic coupling to the nth harmonic, represented by the

summation In (2.14b), can be regarded negligible. In

addition to decoupling the equations, this approximation

yields identical forms in each of the harmonics, so that the

Polder tensor calculated from any of the equations is

applicable to the general term, provided the appropriate

frequency Is used. Dropping subscripts and solving for the

components of m in terms of the components of h leads to the

complex suseptibflity tensor,

m , , (2. 15)
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from which the Polder tensor follows,

Ix, 4 X12 4 1XI

r+ 4 X 'X1 2  1+41r X22 4w x 2 3  (2.16a)

4WX1 3  
4 mX2 3  1+4tX 3 /

Using duny indexes a,b,c = cyclic permutation of x,y,z, the

general tensor elements are,

= f(f f f f )-jf (f f -f f
Xa a = rbob mcoc oa ob mc mbfoc

2 2 2 2
4wf(f 2m+f2 +f 2n-f 208 ob oc

Xab = ma ob +  mc oa ma oc- oa mc2 2 2 _ 2
4W(f 2+f 2+f 2-f2

08 ob oc
Xba = Xab

f J..l H
08,b,or c 21 oa,b,or C

f =li 4 i M
a,bor c 2 oa,b,or c

The two special cases of this relative permeability tensor

that apply to the work herein are as follows (Figure 2.1).

MSSW (H = H0 Z' "o M 0oZ

= JIJ2  U I 0 (2.16~b)

0 0 0

MSFVW (H = x, M = M X)
0 0 0

u =  0 ul -JU 2  (2. 16c)

0 JU2 Ul
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where,
Fom

f = I +

0

ff
m

U2  F2_f 2

0

f = IlL H
0 21r o

f -- L4wMm 2w 0

The Lamor frequency, f 0 is the rate with which the

magnetization vector precesses around the bias field.

Conversely, fm, Is just a convenient grouping of terms with

the dimensions of frequency. Typical values for these

quantities are given in TABLE 2.1 for operation at a 3 GHz

center frequency.

TABLE 2.1

TYPICAL PARAMETER VALUES FOR PURE YIG

Qty. MSSW MSFVW

41M 1750 Gs 1750 Gs
H 0  375 Oe 880 Oe
fm 4900 MHz 4900 MHz
f m  1050 MHz 2464 MHz

0

2.1.4 Gilbert Damping

In reflective arrays, which are intrinsically multipath

devices, effects of ferrite loss must be incorporated into

the propagation constant. This is done through a

modification of the Polder tensor that results from an
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additional term in the torque balance equation. At present,

three, phenomenological models have been suggested for

obtaining this additional term (2.13). Of these, the Gilbert

loss model (2.14), which is an adaptation of the Landau-

Lifshitz model (2.15), was selected for this work. In this

model, the magnitude of the magnetization vector is

conserved as It spirals into the bias field in response to

loss related precessional slowing (Figure 2.3). Such slowing

reduces the gyrotropic torque, allowing the angle of

precession to, collapse into the bias direction until the

resultant reduction In the magnetic torque Is sufficient to

reestablish the balance. Magnetization spiraling corresponds

to an additional component In its vectoral derivative that

is directed radially Inward with respect to the precessional

trajectory. The modified torque balance Including the Gilbert

loss term that contains this required radial component is,

dM M dM. (2.7e)
dt = -IyMxH + c I t

With the harmonic form of equation (2.12) used for M and with

IMI approximated by IM0 I, inclusion of this term is

equivalent to replacing the Lamor precession frequency in the

lossless case by a complex value,

= ~ ~ ~ 4 t +jfoab, c
foa,b,c f oa,b,c =oa,b,c + J fol ,01 (2.17)

lossless w/Gilbert Loss

making u, and u2 complex quantities. For the two bias
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H

M

Figure 2.3. Precessional spiraling due to Gilbert
damping term.
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configurations of interest to this dissertation, the

substitution of (2.17) into (2.16a) obtains,

2 2 2 2
f f (f-f (1+C ))+2c

Xaa Xbb =22 2 2 22 (2.18)" 41w (f0 - (1+ ))2+4f 2 f

0 0
2 2 2

j Cffmff 0 +f2I )C
2 2 2 2 2 2

4w (f-f (1+) +4f f

x =1

Xcc 1

f f
2 2 2 2f , f 0 (-f2 (1+C2))+2 C

Xab = Xba = - 2 2 2 2 2 2
41 {f-f (I+C )) +4f f

where, the Indexes for the non-zero terms are given in

TABLE 2.2.

TABLE 2.2

INDEXES FOR NON-ZERO MATRIX ELEMENTS

MSSW MSFVW

a=l a=2
b=2 b=3
c=3 C=1

The magnitude of the Gilbert loss term, (f, establishes

the rate of spiraling and can be determined at a given

frequency by a single experimental measurement of any

quantity that involves it as the sole unknown. Measurement

of the iinewidth, AH, is ordinarily used for this purpose,

and is defined as the difference in bias field values at

which the imaginary part of a diagonal component of the
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susceptibility tensor attains half the resonant value

(Figure 2.4). Using this definition, the linewidth obtained

from equation (2.18) and shown in Figure 2.4 is,

AH = 4w ' (2.19)

which can be used to replace, Cf, In equation (2.17),

f f + oabc (2.20)
oa,b,c - oab,c +

This linewidth can be experimentally determined from the

absorption notch of S1, observed In a waveguide measurement,

because the two resonances exhibit the same aspect ratio.

A relative measurement such as this has the advantage of

normalizing out the effects of coupling efficiency, ferrite

sample size, and other proportionality factors between the

resonance curves. Results from a typical linewidth

measurement for a polished YIG sphere as a function of

frequency at room temperature with H along the (111] axis
0

are shown In Figure 2.5, from von Aulock (2.16). A

convenient approximation to this curve for use in numerical

calculations Is,

min , min
AH - + 1 (2.21)

2 f Fmin

where, AHmi n = Minimum AH (Oe]

fmi = Frequency at AH = AH nGHz]
aen min

' f =Operating frequency [GHz]

EV.
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Figure 2.4. Resonance characteristic of the Imaginary
part of a diagonal term in the susceptibility
tensor.
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Figure 2.5. Linewidth of a polished YIG sphere at room
temperature with H along [111) (von Aulock).
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Incorporating ferrite losses In this manner appends an

imaginary component to the propagation, corresponding to

propagation loss In the field solutions and phase shifting

upon reflection from an interface between impl-anted and

unimplanted zones.

2.1.5 Effects of Ion Implanting the Ferrite

Ion implantation has been in use for some time in the

production of magnetic bubble devices (2.17). The damage

done to the lattice by ion bombardment causes the lattice to

expand. If selective implantation of small regions is done,

they are held In lateral compression by the adjacent regions,

and the lattice expands only in a direction normal to the

surface. Ferromagnetic resonance measurements on Ion

implanted garnet films (2.18, 2.19) have confirmed that the

principal effects of ion implantation are a reduction in the

uniaxial anisotropy and a reduction in the saturation

magnetization. For small strains, the magnetostriction

constant in the direction perpendicular to the surface can be

used to estimate the degree of crystal damage and hence the

fractional change in saturation magnetization.

MacNeal and Speriosu (2.20) reported on multiple

implant techniques, varified by X-ray diffraction

measurements, that can be used to determine the required

doses and energies for a variety of strain profiles. For the

proposes of modeling, it is desireable to have a constant
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BORON 200 KeV, 8.0 x101 4cm2
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Figure 2.6. Strain profile for a double dose boron
Implant in YSmTmCaGeIG (from MacNeal and

Sperlosu).

0

N

I,,.

3.0x10 15

DOSE (cn'i2 )
Figure 2.7. Projected magnetization change versus

implant dose.
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strain profile to the depth of the implant. MacNeal and

Speriosu (Figure 2.6) demonstrated that a double staggared B +

implant with an initial fluence of 8.OxlO14 ions/cm 2 at

200 KeY followed by a fluence of 3.0x10 ions/cm at 70 Ke

in a 2 um thick YSmTmCaGeIG film produced a strain of

1.07+0.09 % to a depth of 0.36 um. Since these studies were

based on bubble materials with about the same density as YIG

and utilized the same crystallographic orientation as thati' used in the MSW work, the doses of that example were scaled

to obtain the desired bar reflectivities. Exact data was not

available for magnetization change versus dose, but the afore

mentioned studies (2.21) indicate that a dose of about

15 2
3.OxlO ions/cm renders the material paramagnetic. Using

this known endpoint and that for zero strain, a linear

interpolation was done to approximate the dosage necessary to

achieve the required scaling of the saturation magnetization

in the implanted layer that would yield the desired bar edge

reflectivities (Figure 2.7).

2.1.6 Solutions of the Magnetostatic Equation

Subject to the foregoing material model, the

magnetostatic equation, (2.4a), simplifies to Laplace's

equation in the dielectric and MSSW biased ferrite regions,

." 2- 2-

a "v av
2 

2
ax ay

which has the solution set given in TABLE 2.3a.
-a
4.

" -g L %-"-" z" , "'- -.- ,..-.--' .- ' ' "-"-'% . "-\, - . -j"""".""" -,-" %, %, "J
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TABLE 2.3a

MSSW BIASED FERRITE AND DIELECTRIC SOLUTION SET

1 a A(f) 2 a ( = -
2 - 2

A(a) aa B(b) ab

cosh{ka) exp(jkb)

sinhfka) exp(-jkb}

Conversely, application of the MSFVW bias field

conditions results In a "modified" Laplace's equation,

2- 2-aV _ avm
aVm V

2 0 (2.4c)ax ay

with solutions given in TABLE 2.3b.

* TABLE 2.3b

MSFVW BIASED FERRITE SOLUTION SET

2~ (f 2-
1 aA(f) = 2 1 (f) -2

- 2 -(nk) 2 -k
A(a) aa B(b) ab.

cos(nka) exp( kb)

si nfka) exp(-jkb)

An implicit harmonic time dependence, exp(2wft), was

adopted at the time the Polder tensor was developed. With

small signal limitations, no loss of generality is accrued by

this assumption, since with a linear system, any periodic
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excitation satisfying the Dirichlet conditions in time or

space can be represented by an exponential Fourier expansion.

It is arbitrary which directions these solutions are

assigned to, as it is the dispersion relation that fixes

directional behavior. However, associating the B(b) solution

with the y-direction produces an immediately identifiable

wave nature in that dimension.

2.1.7 The Four Layer Boundary Value Problem

In cross section, the structure used to calculate the

dispersion relation consisted of adjacent implanted and

unimplanted ferrite layers sandwiched by dielectric layers,

bound on the outside by ground planes as shown in Figure 2.8.

The transducer filaments are located on the boundary common

to the microstrip dielectric and ferrite (regions I and 2),

entering into the model as z-directed sheet current

densities. As a consequence of the solenoidal law, the

normal components of the b-fields must be continuous accross

the interfaces seperating the various regions. Application

of Ampere's law requires continuity in the tangential

components of the h-fields accept where interupted by the

sheet current densities representing transducer filaments.

Neglecting skin effect, these boundary conditions imply that

the normal components of both b and h in the dielectric

regions must vanish at the ground plane conductor surfaces.

Considering forward and reverse propagation separately, the

harmonic potentials derived from the set of eigenfunctions in

~ ~. '.-
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TABLE 2.3 that satisfy this ground plane condition are given

in equation (2.24) for MSSW and in equation (2.25) for MSFVW

along with the corresponding harmonic solutions for the b and

h fields that were calculated from the gradient relation in

equation (2.3) and the constitutive relation respectively.

V mi(k) = A cosh~k(x-u-v)J exp(-jky) (2.24a)

Vm2 k Bepk)+C x(k) x(jy

V m3 (k) = (B exp(kx) + C exp(-kx)) exp(-Jky)

v m4 (k) = F cosh~k(x+d+s)] exp(-jky)

h1 (k) = Ak sinh(k(x-u-v)) exp(-jky) x (2.24b)

-jAk cosh[k(x-u-v)] exp(-jky) y

h2k = k( exk) C ex(-x) ep-y x

I~2(k-= k B exp(kx) C exp(-k)) exp(-jky) y

h3k -exk) E ep-k) -x(jy x

-jk(8 exp(kx) +- C exp(-kx)) exp(-jky) y

h 4(k) = FkD sinpkx -E ep(- exp(-jky) x

-JkD exp(kx+d E expk) ex(-jky) y

hi (k) = Fj0 k sinh~k(x-d-s) exp(-Jky) x(24c

-ju k cosh~k(x-d-)) exp(-jky) y

-- -- 2

b (k) = u k(BU. exp(kx) -CU. exp(-kx)) exp(-jky)x
2~ ~ 0 

-- - a

*xi k(BU1 exp(kx) + CU~ exp(-kx)1 exp(-jky) y

E-2b (k) =j ;o(66u exp(kx) - U exp(-kx)} exp(-jky)
- -~I - -- 2

-ju k(DU exp(kx) + EU exp(-kx)) exp(-jky) y0 u u
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41 k =uFk sinh~k(x+d+s)) expC-Jky) x

-ju 0 Fk cosh~k(x+d+s)] exp(-jky) y

- I - -

where, U & it u 2

= VEI1 + V

= (1 implanted
u, unImplanted

V M (k) = A cosh[k.(x-u-v)) expC-Jky) (2.25a)

vm2 (k) = (B si~ik)+ C cosCn.kx)) exp(-jky)

V m (k) = (D sin(rl kx) + E COS(n u kx)1 expC-jky)

V m4 (k) = F cosh[k(xid+s)) exp(-Jky)

h1 (k) = Ak sinh(k~x-u-v)] exp(-jky) x (2.25b)

-jAk cosh~k(x-u-v)) exp(-Jky) y

h 2(k) = nik{B cosCq.kx) -C sinCn1 kx)) exp(-Jky) x

-jk(B sin(n I kx) + C cos~n Ikx)) exp(-Jky) y

h 3 (k) = nuk(D ccs(nukx) -E sfn(nr kx)) exp(-jky) x

-jk(D si n(nu kx) + E cos(ti ,x")) exp(-jky) y

h 4(k) = Fk sinh[k(x+d+s)] exp(-Jky) x

-jFk cosh(k(x+d+s)] exp(-jky) y

bl(k) = 11 Ak sinh(x-u-v)) exp(-Jky) x (2.25c)

-ju 0Ak cosh[k(x-u-v)] exp(-Jky) y

b 2 (k) = u on ik{B cos(n1 kx) -C sin(rn.kx)) exp(-Jky) x

-ju u. k{B sin(nikx) + C - 1n~x) exp(-jky) y

+IU 2 k(B sin(nikx) +CcOs(n.kx)) exp(-jky) z
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* 3 (k) M= nk(6 cos~ri ;x) - E sinl(- kx)) exp(-jky) x

oj 0 1Ak(D sin(n ukx) + E cos~nrlkx)) exp(-jky) y

+Uouu k(D sin(nu kx) + E cOs(fl kx)) exp(-jky) z

b4 (k) u 0 Fk sinh[k~x+d+s)] exp(-jky) x

-jUa Fk cosh~k(x+d-s)] exp(-Jky) y

where,

n= /'-Di ; in the implanted region,

nu= 1- 4 ul ; in the unimplanted region

These solutions are the spacial harmonics at a given

frequency with k representing the "guide" propagation

constant along the y-dlrection in the layered- structure.

Energy can propagate in a continuum of directions within the

x-y plane (the structure is assumed infinite in the

z-direction) corresponding to a continuous distribution of

k-values along the y-directlon. In order to accomodate the

general guide boundary condition at a particular frequency, a

linear combination of these spacial harmonics in the form of

an inverse Laplace transform is required,

H (x~y~f) =-jf h.(x,k,f) d(Jk) - (2.26a)

Integration is carried out over the Bromwich contour in the

left half k-plane, with "ax" representing the absolute loss

factor associated with the y-direction. Superposition of the

resulting frequency spectral components multiplied by the

adopted basis function, exp(j2nft), in the form of a Fourier

0
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Inverse transform,

*i(x.y,t) = f Hi(x,Yf) e 2 ft df (2.26b)

yields the time response that would be intercepted at the

(x,y) point of observation.

The spacial harmonics are linearly independent for

different values of k, which requires that they separately

satisfy the boundary conditions. Application of the

electromagnetic boundary conditions to the Individual spacial

harmonics accross the Internal boundaries generates six

equations in each bias configuration for the frequency

dependent coefficients A, B, C. D, E, and F, as given in

equations (2.27) and (2.28).

MSSW (2.27)

s inhf(v 0 0 0 U exp(ku) - UexD(-ku) A 0

0 0 U 0 - u - 0

O uexD,(-;) -U exo(kd]) -Sirnh(ks) 0 0 C 0
U Ui

osiv) 0 0 0 -exo(';U} O*XP{KU) 0 1(k)

o 0 -I -1 =E 0

L e.i-:d) ~xplkd) - -O~h(k) I I

MSFVW (2.28)

[ ~ 2 CO4~ U1 
1

"(I..~ -05(>KU 1(k)

% n C 0

2- 0 0

-c~I 01n S 1 d 0 0 E 0

L Sn- d) -Cosf( d) COSP Iks) 0 0 F L 0

S , *.. j
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Matching at each value of k accross the interface containing

the transducer filaments requires that the sheet currents be

expressed in terms of the Laplace transform,

1(k) = f K z(y)exp(jky) dy ,(2.29)

to be consistent with the representation of the spacial

harmonics.

All of the k's in the above expressions represent the

y-projections of the total propagation vectors in the guiding

structure. Bias field Induced anisotrophy causes the

magnitude of the total propagation vector (a characteristic

of the material and direction, Idependent of boundary

conditions: frequency *velocity4 wavelength) to vary with

direction. In addition to this effect, a continuum of

wavelengths and hence guide propagation constants can be

projected onto the y-direction by simply varying the angle of

the total propagation vector relative to that direction. At

any given frequency, only certain of these total propagation

vectors satisfy the boundary conditions established by the

interfaces between the various regions In the guide. The

relationship between frequency and the y-projections of the

characteristic propagation vectors determines the spacial

modes that are launched from the transducers as well as the

propagation behavior of these modes in the regions between

the transducers. Since this dispersion relation is a

characteristic of the guiding structure, It Is independent of



3U

the excitation currents and can be obtained by setting the

current contribution to zero in the above equations and

looking for nontrivial solutions. The set of homogeneous

equations that result have nontrivial solutions only if one

of them is linearly dependent on the others, which is

equivalent to requiring that the determinant of the

coefficients be identically zero. Dispersion relations

obtained in this manner for MSSW and MSFVW are given in

equations (2.30) and (2.31), respectively.

MSSW
(1 2 2 - 22

-~U t., )Ut h(kv)]+(U-U')(U.tanh(kv)]exp(*2ku)) (.0
exD(2kd) -21 - 2

(UU taenh(ks))(EUC E.tn~v)((.U(
1 tn~vJx(k)2+ U U C ahk)+ U U]Uk

MSFVW .. ..

~ ~ ~ ntanh(ks)+nu tanh(kv)
tan(k(niu+nud)) = - u .. (2.31)nui-tanh(ks) tanh(kv)

Distribution of fields in these two bias configurations is

governed by the tendency to minimize the energy stored in the

wave, which translates into concentrating the fields into

regions in which the material characteristics result in

minimum energy density for a given field intensity. The

energy density in a magnetic field is proportional to the

product of the magnetic field Intensity and magnetic

induction.

In MSSW the orientation of the electronic spins places

the dominant magnetic field component parallel to the plane
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of the ferrite film. Continuity In this tangential component

of the magnetic field at the surfaces of the ferrite,

Bt(dielectric) = Bt(ferrite) - 4wM t ,  (2.32)

results in a weaker dominant induction field outside the

ferrite film. Thus, the MSSW attaches itself to the film

surface so as to concentrate its fields in the dielectric

where the material properties allow the energy density to be

lower. MSSW attachment to the film surfaces results In a

composite wave made up of separate top and bottom surface

counterparts. At high frequencies these two surface wave

counterparts experience essentially the same ground plane

spacing and propagate with the same dispersion relation.

However, at lower frequencies (near the lower cut off) an

operating region is entered In which the wavelengths become

long enough for the waves to be significantly perturbed by

the proximity of the ground plane. In this region the bottom

surface wave, being closer to the ground plane, is affected

more than the top surface wave, and the dispersion relations

become distinct. As even longer wavelengths are considered,

the film thickness constituting the distinction, becomes

negligible compared to a wavelength, and the two dispersion

relations merge once more.

The adopted phase dependence, exp(j[2vft-ky]), shows

that reverse propagation corresponds to replacing frequency

by minus frequency. This substitution conjugates the Polder
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tensor, which in MSSW results in a difference between the

forward and reverse propagation characteristics, representing

anisotropic behavior. Even though the total propagation

vector for surface bound MSSWs does not penetrate the film, a

continuum of y-projected wavelengths are possible by varying

the angle formed by the total propagation vector with the

y-direction in the plane of the film.

In the MSFVW configuration, alignment of the electronic

spins result in a dominant magnetic field that is normal to

the film surface. Continuity of the corresponding normal

component of the magnetic induction field at the ferrite

surfaces shows that the magnetic field is stronger in the

dielectric,

H -H + 4wM, (2.33)nfdielectric) - nfferrite) n?

favoring field concentration in the bulk of the ferrite in

order to minimize energy density. Thus a single volume

distribution of energy is indicated, and the rotational

symmetry of the structure in the absence of significant

crystalline anisotrophy about a normal to the plane of the

film requires that this single wave have the same propagation

characteristics in all directions in the plane of the film.

Correspondingly, the effects of conjugating the Polder tensor

can be factored out of the MSFVW dispersion relation,

indicating isotropic propagation characteristics.
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Another consequence of surface attachment in the

lossless case of MSSW is single forward and reverse

guide propagation modes, since the wave has only one path

available to it. Mathematically, this Is manifested in the

fact that the dispersion relation is made up of single-branch

functions for a real argument. Including ferrite loss

introduces multimode MSSW behavior, with the various branches

of k confined to corridors parallel to the real axis in the

complex plane. This indicates that the introduction of loss

frees the MSSW from being surface bound, allowing it to

interact with the top and bottom surfaces of the ferrite in

the same way as do MSFVWs. The dominant mode lies in the

branch nearest to the origin where actual path lengths and

hence propagation losses are least.

Conversely, MSFVWs are intrinsically free to interact

with both top and bottom surfaces of the ferrite and exhibit

multimode behavior even in the lossless case. In the

dispersion relation this Is characterized by the multibranch

nature of the inverse tangent function for a real argument

(u 1 <0). These modes, often called thickness modes, are

associated with the finite thickness of the ferrite film.

From a ray-optics point of view, the waves bounce back and

forth between effective mirror planes in the vicinity of the

top and bottom surfaces of the ferrite as they travel along

the structure. At any given frequency, only certain

trajectories satisfy the boundary conditions at both top and
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bottom surfaces of the film, resulting in distinct branches

in the guide propagation constant. The lowest order mode

takes the most direct path, accruing the least loss and is

characterized by the longest wavelengths. Typical complex

main mode dispersion relations for MSSW and MSFVW are shown

in Figures 2.9 through 2.12.

2.1.8 Tranducer Modeling

Transducer contributions to the transfer characteristic

were modeled after Wu (2.1), using a lossless form of the

dispersion relationships. In Wu's development, the

transducers are treated as sheet current distributions in

order to obtain the magnetic field solutions in the ferrite,

which amounts to determination of the constants A through F.

Faraday's law is used to calculate the electric fields in

terms of the magnetic fields, from which the Poynting vector

is obtained. Integration of the y-component of the Poynting

vector over surfaces bounding the sheet currents and cutting

through the cross section of the layered structure normal to

the propagation direction yields the radiated power, from

which a radiation resistance is calculated. Since radiation

impedance is an observable, it is analytic permitting the

radiation reactance to be calculated from the Hilbert

transform of the radiation resistance. The driving point

characteristics of the transducers are calculated in terms of

a lossy microstrip model in which finite conductivity and

radiation into the ferrite are the principal contributors to
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loss. Separation of the microstrip driving point impedance

into terms associatied with the microstrip and terms

associated with radiation, yields a lumped parameter model of

the transducer suitable for calculation of conversion loss as

a function of frequency. Overall filter transfer functions

are composed of transmitter and receiver contributions

multiplied with the delay line or array transfer

characteristic.

2.2 Reflectivity Model

2.2.1 Assumptions and Approximations

In the plane of the ferrite film, the three layer

"land" sections and the four layer "bar" sections are

characterized by slightly different propagation properties.

MSW theory effectively models the behavior of the waves

within these regions, but the primary effect of the array on

the MSW is the beam splitting and phase shifting that occurs

at the boundaries of the two regions. In this work the

interface between regions is modeled as an abrupt

discontinuity with uniform properties on either side.

There are two commnonly used methods for modeling

reflection and transmission at an Interface,

(1) Lumped Element Circuit Model,

(2) Plane Wave Analogy
(Wave Impedance).

Initial determination of suitable lumped element circuit

q . I ~ . -
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model topologys and element values is generally a formidable

task, but once established the circuit model technique can

predict subtle response details and offer insight into their

origins. To date the circuit models developed for

discontinuities in planar magnetostatic devices (2.22) have

proven accurate only for very small arrays and Involve

complexity that makes them undesireable for synthesis

oriented work.

Considerable simplicity can be realized using a

plane wave analogy where possible, enabling tractable

analytical calculations to be made on large complex

reflective structures as well as facilitating closed form

solutions in many situations. The plane wave analogy carries

with it a large body of established techniques and

computational tools such as the Smith chart and a variety of

optimization and analytical software such as Compact, that

contribute to the desirability of this approach. Of key

importance to this work, the plane wave analogy opens up the

potential for Implementing desired filter functions using

simple synthesis techniques.

In all of the foregoing calculations, the magnetostatic

wave has been treated as a superposition of plane waves

propagating in the y-directlon. Although the wave fronts are

not uniform, within the context of the magnetostatic

approximation, all points on a given front with a particular

wavelength travel down the guiding structure parallel to the
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y-axis with the same velocity. Thus, each magnetostatic wave

can be interpreted as a bundle of uniform plane-wavelets with

identical propagation characteristics at any given

cross section, traveling down separate channels parallel to

the y-axis. The principal effect of disturbances in the

continuity of the guiding structure, associated with thin

surface anomalies on the ferrite such as etched grooves,

metal bars, or implanted zones is a modification of the

boundary conditions that determine the guide dispersion

relation, exerting a uniform influence over the entire

cross section. In the Immediate vicinity of the surface

perturbation the material characteristics may change

drastically, but this causes only slight bending of

longitudinal flux lines If the anomalous zone Is thin

compared to the film thickness. In addition, the power

associated with this local flux bending is only a small

percentage of the total power In the wave. Thus, the behavior

at any point on a magnetostatic wave front as it traverses a

guide discontinuity shall be treated as representative of the

front as a whole.

Another assumption that is essential to the

plane wave analogy is that transfer of energy down the guide

is determined primarily by the transverse field components

according to the Poynting vector. This assumption hinges on

the fact that in all cases dealt with in this work the wave

vector Is along a principal axis, obviating the effects of
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birefringence. Therefore, the transmission and reflection

coefficients obtained by satisfying the boundary conditions

for the transverse field components govern reflection and

transmission of energy at discontinuities in the guide.

Following the plane wave analogy (2.23), these transmission

and reflection coefficients are conveniently expressed in

terms of a wave impedance as suggested by Schelkunoff (2.24),

~ ej(y)

Z-(y) = ~ y , (2.34)
h(y)

where the subscript, "t", denotes transverse components, and

the superscripts identify forward (+) and reverse (-) waves.

With small signal excitations the film behaves linearly, so

that forward and reverse waves propagate Independently of

each other, coupling only at longitudinal discontinuities in

the structure. Thus, separate wave impedances must be defined

for forward and reverse waves, in terms of exclusively

* forward or exclusively reverse field components.

*2.2.2 Wave Impedance

The dual wave nature of the MSSW complicates

determination of a suitable wave impedance, but a clue to the

solution is suggested by the splitting of the forward and

reverse dispersion relations in the region where the ground

plane effects them unequally. The forward wave exhibits a

more pronounced disturbance in its phase constant (beta) and

4,,..-- .,. , , .,, . , , , ' •
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higher loss (alpha) in this region, as would be expected if

it were predominantly composed of the surface wave

counterpart closest to the ground plane (Figure 2.9).

Associating forward propagation with one surface and reverse

propagation with the other surface leads to the conclusion

that reflection from a discontinuity effectively transfers

the reflected energy to the opposite surface from that of the

incident wave. The existence of a combination of forward and

reverse waves on both surfaces of the ferrite (as is the case

in the field solutions given in equation (2.24)), however,

does not preclude the use of this model for reflection.

Unilateral properties characteristic of delay line

performance corroborate the interpretation that forward

propagation Is primarily associated with a particular surface

and reverse propagation the other. Higher coupling to the

surface nearest the transducers is expected, so the typical

10 dB difference between forward and reverse delay line

insertion losses suggests that waves radiated in opposite

directions from the transmitter are on opposite faces of the

ferrite.

Subject to the above constraints, application of

Faraday's law using the electric field component, ez 9

responsible for principal axis energy transfer down the guide

(APPENDIX A), yields the wave impedances given in TABLE 2.4.

Thus, a MSSW has four identifiable impedances associated with

it, corresponding to the various combinations of two possible
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surfaces the wave can be bound to and two distinct directions

of propagation relative to the bias field. The foregoing

interpretation of the reflection process corresponds to

TABLE 2.4

MSSW CHARACTERISTIC IMPEDANCES

BOTTOM SURFACE WAVE TOP SURFACE WAVE

2 fu 2wfu
FORWARD~ 0 U1 + u2 ) - o ( U1 - 112 }

k + k+

2 nfu o  2 f lio
REVERSE U { 2 -u2 ) - ( U1 + U2 )

k k

requiring wave eigenfunctions with similar forms In their

impedances to satisfy the boundary conditions independently

(major-diagonal only or minor-diagonal only in TABLE 2.4).

Since the Polder tensor is a material attribute that is

independent of propagation direction and of the surface

perturbation in the portion of the ferrite outside the thin

perturbed layer (carrying the majority of the power), the

only distinction between incident, transmitted, and reflected

wave impedances is the dispersion constant. This permits all

other terms to cancel in the transmission and reflection

coefficients that result from matching the boundary

conditions (APPENDIX B) for the transverse fields over the

cross sections between three-layer unperturbed zones (lands)

and four-layer perturbed zones (bars). In a biaxial

anisotropic medium, as is the case with the MSSW bias
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configuration, the transmission and reflection coefficients

at a boundary for a forward going wave are different from

those for a reverse wave. The four required coefficients for

the boundary between adjacent regions denoted I and 2 are

given in equation (2.35),

-+ I /k +1/k
C + - +

C (2.35a)

ZZ 1/k +1/k

z +ZI kC / 2 3 bZ+Z /k +l/kC

(2.35b)

z Z+Z~ + I/k +1/k+W= -: -" -- "+ - := - ,/V+,*

EC

where + and - signify forward and reverse propagation

respectively, and region E preceeds region C for a forward

wave. Regions E and C are distinguished by different

dispersion relations, and the reflection and transmission

coefficients for the electric and magnetic fields differ by

the factors K. and vI, which are unity for the magnetic field

and += IZ, -=Z C /ZC V+=ZIC /ZE, V-=Z/ZC for the electric

field.

As pointed out earlier, the effect of loss is to make

the dispersion relat'ion complex, which in turn makes the

A . . '' " " < " " ' Id " ' " ' '" ' '' " '"" " ''j Z .. ' ,. "',,,
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transmission and reflection coefficients at an interface

complex. This represents phase shifting upon transmission

and reflection that is associated with energy storage in the

fringe fields at the discontinuity. Introduction of loss

results in a time constant for reradiation of this energy

back into the traveling wave, separating the transmission and

reflection products from the incident wave by a phase shift.

In this work, an effective MSSW wave impedance

applicable to the calculation of reflection and transmission

coefficients is used,

= + ~ (2.36)

in which the cancelable Polder terms are dropped, retaining

the correct dimensions and a form compareable to the wave

impedances familiar to uniform plane waves.

Application of Faraday's law to the MSFVW bias

configuration (APPENDIX A) leads directly to an unambiguous

wave impedance, identical to that obtained for uniform,

isotropic guiding structures. The resulting impedance is

expressible in the form of equation (2.36) with the

simplification that isotropic waves such as MSFVW, have

identical forward and reverse propagation constants,

= 0 (2.37)
k

!%
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Figure 2.13 Oblique incidence on a boundary.
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The primary array applications of MSFVW are those requiring

oblique incidence, in which the boundary condition on the

tilted interface involves components of the incident fields.

The combined assumptions,

e negligible z-variation

* negligible crystaline anisotrophy

and, * harmonic time variation

with the magnetostatic field solutions in Ampere's law

indicate that the electric field is in the z-direction,

. ah ah ~
curlfh) = z [ _x] = j2vf~e (2.38)

When the electric field Is in the plane of incidence (the

plane of the film), its projection onto a tilted land/bar

interface whose normal forms an angle 9 with the incident

propagation vector (Figure 2.13), Includes a cos e factor

that does not occur in the projection of the x-component of

the h-field. This, factor therefore appears in the wave

impedance pertinent to the satisfaction of the tangential

0, boundary conditions on the oblique land/bar interface,

Z- = + ~ cos 0 (2.39)

2.3 Array Modeling

2.3.1 Normal Incidence Array Theory

The unapodized normal incidence arrays investigated in

this work are approximated by negligible beam refraction at
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reflector interfaces and uniform element illumination by the

wave and its scattering products. This allows the array to be

modeled as a series of two port transmission elements,

reducing array calculations to multiplication of transmission

matr ices.

Since the primary effect of axial discontinuities in

the structure is to scatter the waves, some insight into the

reflection process is preserved by first determining

scattering matrices for the leading (unimplanted to

implanted) and trailing (implanted to unimplanted) edges of a

reflector zone, and then transforming to transmission

matrices more suitable for mathematical manipulation

(Figure 2.14). The scattering matrices, written In terms of

the transmission and reflection coefficients given in

equation (2.35), are shown in equation (2.40).h ul Oui U ][hu
Leading Edge + = i ui[(2.40a)

L = IIui Puf hi1L

Trailing Edge ~+ = [ _ (2.40b)

Lhu] T l tiu iu u T

These can be transformed to transmission matrices using

equation (2.41).

Tl 1 = S2 1 -S 11522 /S 12

T12  : S22/512
(2.41)

T21  = -511/512

T2 2 = i/512
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4. P0 .

(b,
Figure 2.14. Nor-mal incidence array structure.

(a) Unapodized
(b) Apodized
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The paths between zone interfaces contribute loss and a phase

shift, most naturally viewed in terms of transmission

matrices. A matrix is needed to connect the waves on the

inside of the leading and trailing edges of the reflector

zone,

ep-k(f)w }0

Inside Bar n I (2.40c)
0 exp(+jk(f)w LhiJL

and one Is needed to connect waves on the interfaces bounding

unimplanted land zones,

+ x-J )Wn 0[h

Between Bars = 0f J (2.40d)
"~r 0 exp{+Jk(f)WnLhL

where, wI is the width of the reflector along the propagation

direction.

A transmission matrix for the unapodized array shown in

Figure 2.14a, can be constructed by selecting the appropriate

element matrices from those given in equation (2.40),

and arranging them In a reverse ordered product as Is done in

equation (2.42).

[T1,N ] = TN-I, N][TN-2,14- ".. [T1.2]

where, [ [ (2.42)

For the purposes of this work, the transmission matrices for

the dominant magnetic waves were required ( K and V in
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(2.35) are unity). If the transmission matrices for the

electric field are to be calculated, care should be taken to

use the correct multipliers in equation (2.35).

Further simplification is possible if all lands are

identical and all bars are identical, for which a hybrid

element matrix representing a land/bar combination is

formulated and raised to a power corresponding to the number

of bars in the array. A procedure for obtaining the transfer

matrix for a recursive, normal incidence array aided by

Sylvester's theorem is described by Brinlee (2.25).

The array contributions to the filter transmission and

return transfer functions are expressable in terms of the

elements of the overall transmission matrix, as follows,

- T12T21
T A(f) = T1 1 (Transmission)

, T22

'p.(2.43)

~ T21

RA(f) = (Return)

The transfer function for the overall filter, F(f), is

obtained as the product of the array transmission coefficient

with the input and output transducer transfer functions,

X,(f), and X2(f),

F(f) = XI(f)OTA(f)X2(f) . (2.44a)

An apodized array, as shown in Figure 2.14b, can be sectored

into parallel channels of unapodized subarrays, in the manner

NIN
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of Tancrell and Holland (2.26), in which case the overall

filter response is,

- NF(f) =Z X~)'2fn TA(f) ( 2.44b)

n=

where TA(f) is the transmission coefficient for the nth

unapodized subarray.

The principal application of this theory is with MSSWs,

since they exibit lower insertion losses than MSFVW, their

unilateral radiation properties are essential in Fabry-Perot

resonator applications, and their relationship-to the bias

field tends to keep them channelized (2.27), simplifying

power sampling calculations in the apodized case. The theory

is equally applicable to MSFVW, however, if the appropriate

dispersion relation is used.

A computer program based on this theory that generates

transmission and return loss for a recursive array of

implanted normal incidence reflectors, taken from Brinlee

(2.25) Is given in APPENDIX C.

2.3.2 Oblique Incidence Array Theory

In the case of oblique incidence, the effects of,

" beam refraction upon transmission through a

bar/land interface,

" wave front sampling, and

" beam divergence due to finite aperture transducer
and reflector elements,

must be assessed. Severe beam refraction at land/bar
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interfaces would cause the wave in reflector regions to

follow an off-axis path that is significantly longer than

anticipated by modeling it as traveling straight down the

array axis. A phase increment accompanied by a lateral

displacement in the wave front would result each time the

front traverses a reflector zone, complicating determination

of the power sampling strength of successive reflectors. In

addition, signal degradation due to progressive sampling of

the wave as it traverses the array distorts the signal

available for subsequent sampling. Both of these effects

limit the use of a simple impulse model if the reflectivities

of the array elements made large. Fortunately, reflectivities

encountered with normal surface disturbances such as etched

grooves and ion implanted zones are small enough to fall

within the scope of the Impulse model. Conversely, the

impulse model (superposition model) is applicable only to

very smal1 arrays of metal stripes, since the currents

induced in them generate fields that penetrate deep into the

film, resulting in large reflectivities. Also, with the

isotropic propagation characteristics used in oblique

incidence, there is no tendency for the waves to be

channelized. Inaccuracies are introduced if the signal

sampling contribution of a very short reflector is modeled as

its projection onto the transducer aperture. When it is

necessary to incorporate short reflectors (compared to the

signal aperture), a finite aperture model is required. A
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related source of computational inaccuracy is simple beam

divergence when the axial length of the array is made large

compared to the signal aperture at the launching transducer.

This effect is usually neglected in MSW devices, because the

relatively large propagation losses (compared to SAW) impose

an upper bound on the useable length of an array. Reflectors

placed beyond about 2 cm from the launching transducer both

experimentally and theoretically have negligible contribution

to the filter response. Attempts to compensate for the

natural exponential attenuation of signals from bars beyond

the 2 cm limit yield impractical near in reflector lengths

and high filter insertion losses. Amplitude and phase

equilization of the parts of the wave front that bypass the

shorter reflectors can be accomplished by appending

extensions onto the ends of the reflectors that reach out to

the edge of the signal aperture and are oriented normal to

the array axis.

The phase velocity is only slightly perturbed in the

reflector zones, so that the obliquity factor, cos e, in the

wave impedance is essentially the same for both land and bar

regions, allowing it to drop out of the reflectivity

calculation. Typical zone edge reflectivities for 0.4 um

implants are real, falling in the range 0.001 to 0.01, and

are independent of frequency. This permits the use of a

noninteractive model in which the array response is

calculated as a superposition of independent weighted

I.-.,
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reflector contributions. Launching transducers are kept

short compared to an electrical wavelength corresponding to a

uniform current distribution along the length of the

filament, providing an approximately uniform MSW wave front.

If reflector length variations are moderate, small

reflectivities and the approximately uniform wave front yield

a signal contribution from each reflector that is equal to

its projection onto the signal aperture of the launching

transducer. This follows from the fact that flux linkage at

the output transducer is directly proportional to the

reflected beam width, inducing a correspondingly proportional

current in the fixed load. In addition to the weighting

*" factor, the reflection contribution from each bar consists of

leading and trailing edge components (Figure 2.15) which

interact to give a wavelength selectivity that Initially

peaks when the bar width (measured along the array axis) is

half the MSW wavelength and at wavelength intervals

* thereafter,

w. = )(n + 1/2) , n = 0, 1, 2, (2.45)

In terms of this model, the array transfer function Is,

N kw.

TA (f) = j2 p(f) e-JkZo ILi/2tIe-JkYi sin( 2 ) (2.46)
1=1

where, z is the distance from the array axis to the output0
transducer, YiIs the distance from the input transducer to

* .. * . *-* *- -* ** .'.i .-
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58

the center of the ith bar, L.i/At is the projection of the ith

bar onto the input transducer, W. is the width of the ith

bar measured along the array axis, and p(f) is the

reflection coefficient for an unimplanted to implanted zone

interface. The overall filter response is given by the

product of the array transfer function with the input and

output transducer responses,

F(f) = X1(f),TA(f)*X2 (f) . (2.47)

p.11110 !1 111 1 It 
1A ' C
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CHAPTER 3

SYNTHESIS TECHNIQUES

3.1 Measure Of Fit

Before attempting to fit a physical system to a set of

desired characteristics, it is essential to select one that

is "reasonably" conformable. This procedure is usually aided

by viewing the system in a highly simplified model, such as

the impulse model, in which the natural trends in the system

behavior are revealed. For example, reflective arrays

particularly lend themselves to the realization of filter

functions in which the amplitude and delay (phase slope) are

specified independently, since the geometry of the reflectors

makes them somewhat wavelength selective. Placement of a

reflector relative to the input and output roughly determines

the delay associated with the wavelength (frequency) it

represents, and adjustment of the reflector length roughly

controls the power reflected at that wavelength (frequency).

The effects of the distributed wavelength response of a

reflector, fringing at the ends, beam spreading, etc. can be

dealt with mathematically once potential conformability has

been established.

The next step in choosing the adjustable system

parameters that "best fit" the desired response, is to define

a measure of what is meant by a "good fit". An accurate

representation of the system response, as a function of the
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adjustable system parameters, Pn, is required for this

purpose, either in tabular or preferably analytic form. This

system response is also a function of the independent

variables that define the space in which the fit must occur,

X, (time or frequency in the case of a signal filter) and

often (but not necessarily) takes the form of a complex

transfer function, as is represented by equation (3.1).

F(x,p) (system response)
(3.1)

T(x) ("target" response)

There are a variety of ways to define an "optimal" fit.

3.1.1 Taylor Criterion

In the Taylor criterion (3.1), for example, both the

system representation (transfer function) and the desired

characteristic are expressed as Taylor series expansions.

Corresponding coefficients in the two series are then

equated, beginning with the most significant terms and

proceeding until the adjustable parameters have all been

specified. This approach has the disadvantage that it deals

with the functions and their derivatives at a single point in

V the space formed by the independent variables.

3.1.2 Direct Equation

Alternately, T and F can be directly equated at as many

points in x-space as there are adjustable parameters,

F(x m lp) = T(x ) m = 1, 2, ... N (3.2)
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forming a complete set of linearly independent equations that

can be solved for p n-.If the resulting equations are

nonlinear in P n then the usual procedure is to expand each

of them in a first-order Taylor series in parameter space

about an initial guess point, (P 10 , P2o' ... 9PNo " The

solution to this linear set of equations is then used as the

initial guess in the next iteration, etc. This technique

achieves an exact fit to the desired response at the chosen

points in x-space, but provides no guarantee of what will

happen in between, nor does It control the behavior of the

derivatives of the response at these points.

* 3.1.3 Chebyshev Criterion

The Chebyshev or equiripple criterion (3.1) approaches

the problem of "best fit" by seeking to minimize the largest

value of the absolute difference between the system response

and the target response in the region of interest in x-space.

The result is uniform ripple in the absolute error function

within this region. If the desired uniform ripple has a

magnitude of, , then a function, z&(x,p), can be formed

which has zeros where the absolute error function is equal to

as shown in equation (3.3).

2 2

where, (3.3)

E e(t) = t T()-F(X,p))(T(x)-F(x,p)o

The extrema in the error function, E(,) occur both on the



62

boundary of the region in x-space and at the points where the

derivatives in <-space vanish. In the special case of filter

synthesis, x-space consists of the single variable,

frequency. The region of interest becomes an interval bounded

by the frequencies f, and f2, where f1 <f<f 2 . A function,

z e(xp) that has zeros at the extrema of the error function

is given in equation (3.4).

e ( ' dE
z (P) = (f2-f)(f-fl) df- (3.4)

The equiripple criterion is satisfied by forcing the points

where the error function equals to correspond with the

points where the extrema are located. This can be

accomplished by setting z proportional to ze (scale factor

2
N ), if the two are polynomials, since a polynomial is

uniquely defined by its zeros to within an amplitude factor,

2 2 - - I dE[-E (xp) = -2 (f2-f)(ff) dE (3.5)

N

The solutions to this differential equation are the Chebyshev

polynomials of order, N,
-I 2f

C(f)= k cos{N cos [2,(ff [ 2lr . (3.6)

At this point, the problem is to select the adjustable

parameters in the physical system that "best fit" the error

function, defined in equation (3.3), to the appropriate order

Chebychev polynomial as determined by the number of

adjustable parameters. If the target function is expressible
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as a finite order polynomial, then there are known system

topologies that can achieve an exact fit. However, if the

system topology is fixed, a SAW RAF for example, and/or the

target function is not a finite order polynomial, say a

Hamming linear delay response, then the designer is again

faced with the problem of obtaining a "best fit", but now to

the Chebyshev criterion.

3.1.4 Mean Squared and Mean Absolute Error Criterion

Although equiripple is extremely useful in channel

filters, it is not necessarily the optimal design for wave

shaping filters. These filters rely on average correlation, a

property that makes them effective in discriminating against

extraneous signals such as noise and renders them insensitive

to flaws in the received signal introduced by the

environment. In the context of wave shaping filters, a far

more appropriate definition of a "good fit" would address the

minimization of average absolute or squared errors over the

passband of the filter,

;i f 2

sE f() f f f w(f)(T(f)-F(f,$)){T (f)-F (f,p)) df
f IMEAN SQUARED ERROR

f2 7 (3.7)
-I I - .

Enb(p) f f W(f)(T(f)-F(fp)){T (f)-F (fp)) df.
f IMEAN ABSOLUTE ERROR

A weighting function, w(f) is included to allow the fit to be

emphasized at critical parts of the passband.
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The Mean Absolute Error and the Mean Squared Error have

different values for the same set of system parameters, but

lead to the same "optimal" set when they are minimized.

Generally, the Mean Squared Error criterion is preferred for

its relative computational simplicity, although choice of the

criterion can be based its convergence properties in

conjunction with the search algorithm used to locate the

extrema.

3.2 Search Techniques

Location of the minima in the error surface, although

mathematically straight forward, constitutes a major part of

the synthesis task, depending on how the system parameters

enter into the error function. Convergence properties depend

heavily upon the shape of the error surface in the vicinity

of the minima and the search algorithm used to explore it.

3.2.1 Error Functions That Depend Linearly on System

Parameters

When the error function is a linear combination of the

adjustable system parameters, pn' a closed form solution for

the "optimal" parameters is possible. Setting the partial

derivatives of the error function with respect to each of the

N adjustable parameters to zero yields a matrix of N linear,

linearly independent equations that can be algebraically

inverted to obtain the required parameter values. For

example, this situation occurs in phased arrays of

noninteracting reflectors or transmitters for which the

".44
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spectral amplitude response is the only critical

specificati'on, allowing the nonlinearly contributing element

positions to be preselected (usually it is advantageous to

place them on wavelength intervals from the receiver). The

remaining parameters to be chosen are the relative

contributions from each element, represented by the weighting

factors in the linear superposition that constitutes the

overall array response, equation (3.8),

N
F(f) = P PnGn (f)exp(-jk(f)dn) , (3.8)

n=l.

where, G n(f) Is the individual transfer characteristic for

the nth array element with zero transmission path, k(f) is

the lossy dispersion relation in the propagation medium of

the phased array, and d is the propagation path between the

nth element and the receiver antenna. Depending on whether

sampling is accomplished by discarding energy or by simply

not radiating it, the element weighting factors take on

slightly different meanings. In a reflective array, the

square of an element weighting factor represents the fraction

of incident power that is available for reflection to the

output by the element. If the reflector uniformly samples the

entire transmitted beam (corresponding to a reflector that

spans the full width of the input transducer aperture in a

450 incidence RAF) then the square of the weighting factor is

unity. Thus, in a 450 incidence RAF the squares of the

weighting factors should be normalized to represent the
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transducer. Conversely, if element weighting is achieved in a

- noninteracting transducer array using a matched power

splitter (if elements interact the techniques described below

for nonlinear dependence on system parameters must be used),

then the weighting factors should be normalized to the square

root of the sum of the squares of the weighting factors, to

satisfy conservation of power.

Direct Equation results in the following set of

equations for the unnormalized weighting coefficients, pn' of

the individual elements,

N
T(fm) = I p G n (f m)exp(-jk(f m)d n) (3.9)

n=1 m = 1, 2, ... , N

In general, the p n's obtained from this set will be complex,

indicating that an external phase shift is required in

addition to that of the phased array itself. Since the phased

array is intended to provide all of the filtering functions,

phase shifting included, another design approach is

preferable.

The Mean Squared Error Criterion provides an alternative

that allows the designer to force the pn's to be real. The

only reason that the weighting coefficients are complex

(corresponding to an external phase shifter) is that in this

special case the element locations have not been Included In

the synthesis, for the purpose of preserving linear

dependence of the transfer function on the system parameters.
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Inclusion of the element positions in the synthesis is

preferably treated using a modified approach, but

Incorporates the required phase shifting within the phased

array itself. The MSQ error function that applies to the

phased array (whether or not the element positions are

included in the synthesis) is,

f2
N -

E msq(p) = f w(f)(T(f)- I p nGn (f)exp(-jk(f)dn)
n= (3.10)

fl N" {(f)- I p n Gn(f)exp[-Jk(f)d n ] df,

n=!

in which the constant multiplier has been omitted.

Differentiating with respect to the arbitrary weighting

coefficient, pm" and setting the result to zero yields N

linear equations,

f2

ms q = - w(f)Gm(f)e -jk(f)dT(f)- I p Gn (f)e Jk(f)dn) df
fl 

n(3.11)

f2 _ .~ "N - j k ( f ) d n

m w(f)Gm(f)ejk (f)dm(T(f)- nPnGn (f)e n) df
n=l

fl
-0

m = 1 , 2 . . .. . N .

The integrals are conjugates of each other, so the sum can be

expressed as twice the real part. Some manipulation yields,

-%
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f2

(3.12)

. ju 2  
5w(f)l°rnmfT)(f~@XDE~k (f)d m] d4

which can be algebraically inverted to obtain the

unnormalized element weighting coefficients., once the

numerical integration has been carried out on the matrix

elements (m and n are the ROW and COLUMN Indices

respectively). An interval for the numerical integration

should be selected that is much smaller than the minimum

frequency interval required for the exponential phasor to

execute one rotation within the region of Integration. The

weighting coefficients were constrained to be real by their

removal from under the Re() when equation (3.11) was

sinlified to equation (3.12). As written, this result

implies that all parts of an individual array contribution

have the same path length to the output, representing

effectively an infinite aperture or far-field case. In cases

for which this is not true, the distributed effects of an

array element can be accounted for by replacing G n(f) with an

integration over the length of the element. However, in most

filter designs the array elements are configured so that such

an integration is unnecessary, and In antenna designs, the

receiver is usually located in the far field.

.. -N r1 '
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A significant special case occurs when a unity

weighting function is used with identical broadband elements,

" w(f) = 1

" G(f) Z G , (3.13a)

in a )ossless, nondispersive medium,

k(f) = 2f, (3.13b)

where G is a real constant, and c is the speed of light in0

the medium. The off diagonal matrix elements on the left side

of equation (3.12) have the form,

9 2

1 f e 9 Ci , (3.14)

e1

which is zero if 92 - 91 = 2Mr, corresponding to,

2f2 {d +d n + 21f (dm+d n) = 2Mw

c c
or, dm = M(A

2 - A)

For an octave bandwidth filter, this condition corresponds to

placing the array elements at intervals equal to the

wavelength at the upper band edge. The "optimal" choice of

the weighting coefficients for this case reduces to the

Fourier transform,
f 2

Re{f T(f)eJ 2 fdn df)

pn = (3.16)

G0 (f2-f1 )
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A practical example of the lossy, dispersive case is

provided by the MSSW channel filter synthesis done by

Ataiiyan (3.2). In this work, a comb transducer array was

used, as In Figure 3.1a, with electrically short microstrip

filaments extending into the aperture from both sides,

separated from their counterpart by a small gap. Mutual

coupling among the transducer filaments was neglected,

including the capacitive effects at the filament gaps.

Reflections off the transducer splines and modifications in

the propagation constant under them were neglected.

Longitudinal current distributions in the electrically short

splines were assumed to be zero at the gaps, increasing

linearly in magnitude with distance away from the gaps, and

exhibiting no relative phase shift along the length. Currents

on opposite sides of the microstrip feeder fork are spacially

1800 out of phase, so that when the gap is placed in the

center of the aperture, waves launched from the opposing

splines cancel at the receiver transducer, which extends

accross and uniformly samples the aperture. Viewing the

longitudinal current distribution In the transducer splines

In terms of even and odd components, the symmetry of the odd

component prevents It from contributing any net radiation.

However, the even component radiates an amount proportional

to the mean of the linear current distribution. So, the

weighting factor for a spline pair varies linearly with the

displacement of the associated gap off the center line of the
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array, passing through zero at the center and assuming

opposing signs on opposite sides of the center. Thus, the

weighting scheme is plotted in the displacement of the gaps

about the center line of the array and turns out to be nearly

a sinc function (corresponding to the "box car" frequency

response) even in the presence of dispersion and loss. Use of

MSSW helps to channelize the waves, improving the

effectiveness of the uniform wave front approximation. Phase

shifts in the feeder structure were ignored, which led to

limitations on the tunability of the device. The frequency

response of the experimentally realized device weighted

according to equation (3.12) is compared to the target and

theoretically predicted frequency responses in Figure 3.1b.

Placement of an identical receiver array at the location of

the image of the transmitter array as projected in the

existing receiver filament would double the skirt steepness

and out of band rejection without requiring additional design

effort.

Another practical synthesis example In which the system

response depends linearly on the weighting factors is

illustrated by the delay line work done by Chang (3.3). The

object of this work was to generate a filter with a linear

group delay by cascading MSSW delay lines with different

dispersion relations as governed by their ground plane

spacing from the ferrite surface, Figure 3.2. Since the

dispersion relation and associated group delay vary
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YIG FILM

GROUND BLOCK

Figure 3.2. Cascaded MSSW delayl Ine prototype (Chang)
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nonlinearly with distance from the ferrite to the ground

plane, the number of serial sections and their ground plane

spacings should be chosen in advance. The system response in

this case is the group delay for the composite delay line,

consisting of the sum of the delays in the separate sections,

N Id e I

F(f) 1n (3.17)F 2w) n= 1

where, on  is the lossless wavenumber (j; = a+jB) in the nth

serial delay section, Ln is the length of the nth serial

delay section, and there are N sections. The target delay can

be expressed,

T(f) = K(f-f 0 + 1 (3.18)

where c is the desired delay slope with dimensions [nsec/MHz]

and r is the desired delay at f with dimensions (nsec].
0 0

Either direct equation or the MSQ error criterion can be

applied easily to this problem yielding closed form

solutions.

Direct equation takes the form,

N 1 dBI fn : ([fmf ] + (3.19)21r n=1 df i m n =K m- 0 j+ 0

m - 19 2 .... . N

Solution of this set of linear equations for the delay lira

segment lengths, t n , requires inversion of an NxN matrix,

where N is the number of crossover points. The crossover

P~~ .
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points needn't be spaced at equal intervals, in fact the

solution can be optimized by grouping them more densely

around critical points.

Using the MSQ error method, equation (3.12) specializes

to the specific form represented by the mn-matrix element

given in equation (3.20).

* L2 I 1 df 3] 2[f 2  d'lT(f) df3
fw(f) _ _1 df [tm 2v f w(f)i TI- d

(3.20)

Solving for the t in this set of linear equations requires

that the matrix elements on both sides of the equation be

determined by numerical integration over the spectral region

of interest, fl to f2 . followed by an NxN matrix inversion.

Selection of the sampling interval used for numerical

integration can be based on the Nyquist sampling theorm and

the maximum message or signal duration used in the time

domain.

In this simple case, no real advantage is accrued by

pchoosing the direct equation method since the solutions in

both cases are obtained without iteration. The MSQ error

criteron is actually simpler because it doesn't leave the

designer with the problem of placing the crossover points to

obtain a "best fit" as does the direct equation technique.

Also the MSQ error approach minimizes the RMS error,

. . a 7
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representing a measure of quality in a matched filter

applicalon, as these filters intrinsically average input

signals.

3.2.2 Error Functions That Are Nonlinear Functions of the

System Parameters

In general the system response function and

consequently the error function vary nonlinearly with the

system parameters. Partial differentiation of the error

function, equation (3.7), with respect to each of the system

parameters and setting the result to zero gives,

aEm ( )_ ~(fp) 
=- -2j Re( a F  p [T(f) - F(f,p])}df = 0, (3.21)

Sm= I, 2, ... N

a complete set of nonlinear algebraic equations in the system

parameters, locating the extrema. These equations can each be

expanded in a Taylor series of N variables about an initial
-I

guess, P0' in parameter space and truncated to retain only

the linear terms. System parameters are observables and are

therefore real variables, allowing removal from the Re(),

-1+1Ca ]
-- -- -,- -1

f2 F (f,p ) aF(fp ) a F (f,p )-

w(f)Re- - -L -0 0 0 C[T(f)-F(fpapnap mapn0

[f2  aF 1(f~p)- 
- - 32

Lw(f)Re(- a- 0 fT~f)-F(f,p )])df](.2a



77

where the superscripts, i, indicate the iteration, p0 is the

ith parameter-set guess, and subsequent parameter-set guesses

are obtained from,

-i+l -i -i+l
P = p + Ap + (3.22b)

If the nonlinear MSQ error function is expanded in a Taylor

series prior to differentiating with respect to the system

parameters and then truncated to linear, the result is

identical to equation (3.22a) with the exception that the

mixed partial derivative Is absent. This approach tends to be

extremely cumbersome, because each iteration requires that

N(N+I) matrix elements be numerically integrated, followed by

an NxN matrix Inversion. Calculation of the integrand at each

numerical integration point is complicated by the need to

determine several derivatives using the fundamental theorm of

calculus. Convergence of this algorithm is typically

oscillatory and slow, as the errors introduced by the

approximations into the functional dependence on frequency of

the integrand are accumulated throughout the integration.

Also, this method seeks extrema in the error surface by

locating points in parameter space where the slope goes to

zero. Subsequently, the points at which the algorithm

* converges must be tested to determine if they are minima,

maxima, or saddle points.

A gradient search provides a computationally simpler

and operationally more systematic approach to the location

t ," -. . ...- . .. , . ,. .. . .. .. .. . .. . ......... , . , _ . . .
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of minima in the error surface. This technique converges

exclusively at relative minima, so that further testing is

not required. If more than one minimum is found inside the

allowed domain in parameter space, the best one is easily

identified by outputing the MSQ error, already calculated as

an intermediate step within the algorithm. At each point in

parameter space beginning with an initial guess, the negative

gradient of the error function is used to point the way for

the next step. Calculation of the gradient of the MSQ error,

f2N ~

* 3aF (f,p)-
grad-(Em) = -2 X u I w(f) ReF [(f) - F(f,p)]) df

p m s q n I n f a p n( . 3
Sn=1 an

f (3.23)

involves only N numerical integrations (compared to NxN

above), each of which contains only a single derivative, and

determination of the APn's for the next step,

-grad-(E )41u

APm = {  msq n)Igrad-(Emsq step

f 2 ~(3.24)

f f w(f) Ref { (f ')[T(f) - F(f,p)]} df
step ap mfi

/ NIa fp
.I f w(f) Ref (f' )[T(f) - F(f,p)]) dfIap n

does not require an NxN matrix inversion. In the above
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expressions, u is a unit vector along the direction of then

Pn axis in parameter space, and astep is the vectoral

magnitude of a step.

In a two dimensional sense, the trajectory followed by

this algorithm is effectively that of a viscously damped ball

rolling on the contoured error surface, subject to a uniform

gravitational field. Normalization of the step vector in

equation (3.24) serves to dampen overshooting in the

trajectory, analogous to viscous damping of the inertial

overshoot in the ball model. Just as with the ball, both

excessive overshooting (step size too large) and excessive

damping (step size too small) slows progress toward the

minimum. A subprogram can be Included in the algorithm to

vary the step size while monitoring the rate of descent, so

as to optimize this quantity.

3.2.3 Synthesis Using The Impulse Model

In the case of MSW reflective arrays, the impulse model

(3.4, 3.5) provides a very good approximation to actual

device performance. The reflectivities of the zone interfaces

exhibit a broad, flat spectral response, allowing them to be

modeled as having an ideal impulse response. A reflector zone

contributes a pair of reflected waves to the filter response

from the leading and trailing edges, and interaction between

these paired reflections yields a very narrow reflector

bandwidth (compared to the filter bandwidth). A spacially

distributed array of narrow-band reflectors can be modeled as
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a contiguous filter bank with adjacent but nonoverlapping

passbands (Figure 3.3). Subject to this approximation, the

Mean Squared Error (3.7) is minimized by equating the

frequency response for the ith reflector to the target

transfer function, normalized by the product of the

transducer frequency responses, at f.. By associating each

reflector with a particular part of the overall spectrum, the

group delay and spectral amplitude of the filter can be

specified independently.

The spectral response of a reflector, governed solely

by Its geometry, achieves a maximum when the path lengths

associated with leading and trailing edge reflections differ

by an odd multiple of the wavelength. The frequency at which

this occurs for the Ith reflector Is determined by the

dispersion relation,

= (3.25)wi lm(jk(f I))

where, w, is the path length difference from input to output

between leading and trailing edge reflections for the ith

reflector (this is the reflector w~dth along the array axis

In the 450 incidence case). Reflector placement relative to

the Input and output determines the transmission path length

and thus assigns a group delay to the frequency that the

reflecto- responds to,

g(fy) = I dlmjk(f) Y" (3.26)
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where, Yi is the mean transmission path length between

leading and trailing edge reflections from the ith reflector.

According to the approximate impulse model, these group

delays must be equated to the desired group delay, [(fi),

with the group delay associated with the transducers and

driving point mismatch subtracted off,

~(f (f- dlm(jk(f. )) i(.7i - t i) df YI . (3.27)

Eliminating frequency from equations (3.25) and (3.27) gives

an implicit relation between yi and w i that can be iterated

until the change in yi from its value at the leading edge of

the zone that is being positioned (land or bar) equals wi/2,

corresponding to the zone center. Application of this

procedure to determine the center of a land region is

equivalent to locating the leading edge of the subsequent

reflector region and results in equal land and bar spacings.

The signal contribution of each reflector is determined

by the fraction of the incident beam that it samples,

corresponding to its projection onto the input transducer.

When significant propagation loss is present, as is the case

with MSW RAFs, reflector lengths must be modified to

compensate. In general, the reflector length should be chosen

according to the square root of the normal ized reflected

power ratio given in equation (3.28).

.. . -. . . .
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T(f )T (f 1/2

-- : .. ~ .exp(Re(jk(fi)}Yi] (3.28)
0 X (f i)* I (fi). 2 (f i)OX (fi)o. 1 1li "X

where, L./tA is the normalized projection of the ith

reflector onto the input transducer, f. is the center

frequency reflected by the ith reflector, T(f) is the target

filter transfer function, k(f) is the dispersion relation for

the layered structure (approximately the same for both

implanted and unimplanted sections), and X1 (f) and X 2 (f) are

the input and output transducer frequency responses.

An illustration of the application of this approximate

synthesis technique is provided by Figures 3.4 through 3.8.

These designs also demonstrate the limitations of the MSW RAF

technology subject to realistic constraints. Electrical

wavelengths in the transducers are about 40 mm, making it

desireable to keep the filament lengths and associated MSW

wave aperture less than 4 mm. Typical MSW wavelengths are on

the order of 300 um so that the ratio of the longest

reflector to the shortest reflector (bar length ratio) is in

practice limited to about a factor of 10, which imposes one

of the principal limitations on ultimate device performance.

When only moderate passband modifications are required, as

illustrated by the constant amplitude linear delay filters in

Figures 3.4 and 3.5, a bar length ratio of 10 is adequate.

These designs entailed only a slight flattening of an already

approximately flat passband, and the linear delay slopes were

i4
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Constant Amplitude Weighted

Delay Slope: 600 nsec/GHz

YIG Thickness: 20 microns

S20, Bar Length Ratio: 10
Array Length: 19 mm,
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Figure 3.4. Positive slope constant amplitude MSFVW
filter synthesized using the approximate
impulse model technique.
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Figure 3.5. Negative slope constant amplitude MSFVW

filter synthesized using the approximate

impulse model technicque.
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chosen to fit the mean slope of the intrinsic delay curve,

requiring only mild smoothing on the gradual parabolic

curvature. The characteristically large insertion losses

shown by these results are primarily due to propagation loss

and represent severe limitations on the dynamic range of MSW

reflective arrays. When losses are in excess of 40 to 50 dB,

reflections from the crystal edges constitute a major portion

of the transmitted signal. Edge reflections on a well

terminated crystal using the current techniques are at about

-50 dB, well above the -75 dB thermal noise floor. Thus, the

practical dynamic range of a reflective array Is determined

by the quality of the terminations on the crystal edges.

Propagation losses result In a linear roll-off of the

frequency response in the passband of a uniform array. The

edge of the passband with the highest insertion loss defines

the best loss that Is achievable if the array is apodized to

obtain a flat passband. Long axial array dimensions are

required to generate broadband responses, and thus

propagation loss imposes a trade-off between filter bandwidth

and dynamic range.

A theoretical investigation of a linear delay Hamming

weighted filter is presented in Figures 3.6 through 3.8. The

bar length variation that is required to obtain a Hamming

weighted passband is shown in Figure 3.6, compared to the

pattern that would be used in the absence of propagation

loss. Although Hamming passband variations span only about a
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factor of 10, compensation for MSW propagation losses

distortc the apodization pattern into a curve that spans a

bar length ratio of nearly 1000. The amplitude and delay

responses obtained from application of the Impulse model to

the synthesized design are shown in Figure 3.7. The bandwidth

of the desired Hamming weighting was 300 MHz, but

approximations in the synthesis technique made it necessary

to shoot for a bandwidth of 250 MHz to obtain this result.

This design demonstrates that an excellent linear delay

Hamming weighted filter can theoretically be synthesized if

limits placed on the bar length ratio are relaxed. A

600 nsec/GHz delay slope was specified In the synthesis

algorithm, and the slope from the impulse model matches this

value quite effectively.

Conversely, the effects limiting the bar length ratio

to 20, while holding all other parameters constant are shown

in Figure 3.8. Severe degradation in both the amplitude fit

to the Hamming weighting and the linearity of the delay

characteristic occurs.

Realization of sophisticated filter functions is beyond

the scope of the MSW reflective array technology. The

approximate synthesis technique has proven to be a useful

tool in the establishment of this limit and for the design oF

simpler devices. Provided loss is not a critical factor, MSW

RAFs still hold promise for resonators, narrow band channel

filters, and moderate bandwidth compressive filters.

$I
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Figure 3.7. Impulse model response for Hamming weighted
linear delay filter, synthesized using the

approximate procedure.
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Figure 3.8. Result of Hamming synthesis with the bar
length ratio limited to 20.
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CHAPTER 4

ION IMPLANTED MSW REFLECTIVE ARRAYS
THEORY versus EXPERIMENT

4.1 Device Fabrication and Measurement Details

4.1.1 Film Growth

The Yttrium Iro Garnet (Y 3FesO1 2 ) films used in the

experiments were grown or one Inch polished [111] oriented

Gadolinium Gallium Garnet (GGG) wafers, by l.iquid phase

epitaxy. A Tolksdorf melt (Y20 3 :1.40 gm, Fe 20 3 :11.82 gm,

B20 3 :4.04 gm, PbO:182.71 gm) with a saturation temperature of

920 C. A supersaturated melt was obtained by disolving the

constituents and holding them at 1100 0 C for 4 hours and then

slowly lowering the temperature to approximately 100 C below

the saturation temperature where the crystal growth sequence

was begun. The seed crystals (GGG) were lowered to the

surface of the melt using a rotating (240 rpm) three fingered

chuck that held the polished face tangent to the surface of

the melt. The polished face was allowed to just contact the

surface of the melt so that the back side of the crystal was

not immersed during the growth. Crystal growth rates ranged

from 0.5 um/min to 1.0 um/min, depending on the state of the

melt. The melt temperature was allowed to drop approximately

5 C between each growth to compensate for the depletion from

the previous' growth.

4 - ~ ~ *



AD-RI75 472 TUNABLE MICROWAVE TRANSVERSAL FILTERS AND DISPERSIVr 2/2
DELAY LINES BASED ON (U) TEXAS UNIV AT ARLINGTON DEPT
OF ELECTRICAL ENGINEERING J N OWENS ET AL 38 SEP 96

ASSIFIED AR0- 8 I-EL DAAG29-82-K-8872 F/G 9/5

IIIEEIEEEEEII
UClA o 5l llil llI
IIIIIIIIIIIIIIosEoiEEEEDEEEQIE
*oumuuuwiuuuu
EhhomhhhhohhhhE
EhElhhhmhEmhEE



1. 1 -L , 

I"11 W. 11.
11111112.2

1111IL2 Ul_

02, IIISUI amm



92

Following the growth, the excess flux was stripped from

the wafers using a 24 hr. glacial acetic acid bath. The

crystals were weighed before and after the growth to

determine the film thickness according to,

Thickness [um] = AWeight [gm] - 383.3. (4.1)

Typical values for the Gilbert loss parameter in Figure 2.5,

AH mi n , range from 0.1 Oe to 1.0 0e. A value of 0.5 Oe was

assumed, unless stated otherwise.

4.1.2 Array Implantation

The array implantation masks were made of 4 um thick

aluminum, with openings where the surface implant zones were

to be located. These masks were fabricated by evaporating the

YIG/GGG wafers with aluminum, patterning with photoresist

using standard photolithographic techniques, and then etching

in phosphoric acid at 700 C. The mask thickness was chosen

according to tabulated range data (4.1), indicating that at

200 KeV acceleration potential, the fluence of boron ions is

down by a factor of 10- from the incident value after

passing through 4 um of aluminum, considered adequate for

this application.

The masked wafers were boron implanted using the dose

ratios prescribed by MacNeal and Speriosu (2.20) for a nearly

uniform strain profile to a depth of 0.36 um, and the

approximate data for magnetization change versus dose given

in Figure 2.7. This data is summarized by equation (4.2).

4.,- A'~S
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~M 2 is O I s
DOSE 2 0oKeV cm ] = -2.875x101 • M + 2.9000xi0

0
(4.2)

DOSE7 Kev (cm- 2 -1.0875x101s- MI + | 100OOxIOis
0

4.1.3 Microstrip Fabrication

Contact masks for the transducer structures were

patterned using standard photolithographic techniques. The

microstripa were up plated in gold to a thickness of 3 Um

through a photoresist mask on a 250 um thick alumina

substrate, which served as the ground plane spacer for the

microstrips. During the up plating process the back of the

alumina was uniformly plated to assure a smooth ground plane.

Silver epoxy was used to bond the microstrip substrate to a

brass ground block, and solder connections were made to flat-

tab OSM coaxial launchers at the input and output ports.

4.1.4 Measurement Details

Manual measurements were taken on an HP-8409 network

analyzer, and the automatic analyzer results were obtained

using an HP-9845B computer/controller.

4.2 Normal Incidence Array Theory versus Experiment

4.2.1 MSSW Biased Arrays

Single-bar transducers were used in the MSSW normal

incidence experiments, spanning a 3 mm MSW signal aperture,

with 30 um wide filaments, yielding a 100 n characteristic

impedance. The feeder lines connecting the coaxial connectors
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to the transducer filaments were 250 um wide, corresponding

to a 50 n characteristic impedance. The ferrite array was

placed face down on the transducer structure (Figure 4.1).

All of the experiments done, consisted of uniform arrays of

46 stripes. The effect of varying YIG thickness and implant

dose was investigated, and the devices tested are summarized

in TABLE 4.1 (based on equation (4.2)).

TABLE 4.1

BORON IMPLANT SCHEDULE FOR THE NORMAL INCIDENCE
MSSW AND MSFVW EXPERIMENTAL DEVICES

Acceleration Acceleration
YIG Potential @ 200 KeV Potential @ 70 KeV M0.

Thickness
1 [um] Dosi Charge DosI Charge MO

(cm ( [Coulombs] (cm ] [Coulombs] pu

14 -3 14 3
12.7 4.0xi0 13  4.6xi0 4  I.5x1 I.7xl0 4 0.5

8.OxlO 9.1xl0 3.0xI0 3.4xi0 0.9

8.OxlO 14  9.1xl0 - 3  3.0xl0 14  3.4xl0 - 3  0 114 0-3 • 14 -
13.2 4.OxiO14 4.6xi0 .5x1 I.7xO 3 0.5

8.OxlO 1 3  9.1xi0 - 4  3.0x1O 13  3.4xi0 - 4  0.9
157 80i14 0-3 14 -3

8.0xi0 14  9.1xi0 3.0xO1 3.4x10 0. 14 6 -3 14 -3
15.7 4.Ox1 4. 6x0 1 5xlO13 1.7x10-4  0.5

8.OxiO 9.lx0 3.0xi0 13  3.4xi0 0.9

8.0x1O 14  9.1x10- 3  3.0x1O 14  3.4x10 - 3  0.1
18.7 4.0xlO 14  4.6xi0 - 3  I.5xlO14 l.7xl0 - 3  0.5

V8.0x10 114 9.1x104  3.0x10 1 4 3.4x104  0.9

22.5 4.Ox1lO1 4.6x10- 3 .5x10 14  1.7x10 3  0.5
8.0x10 13  9.Ix10- 4  3.0x1O 13  3.4xi0 - 4  0.9

Corresponding theoretical and experimental array transmission

responses are shown in Figures 4.2 through 4.6. Since the
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Experiment Theory

(a)

(b)

1.0 dO/div

(c)

Figure 4.2. Theory versus Experiment for normal Incidence
MSSW arrays on 12.7 urn YIG (2.5-3.5 GHz).
(a) MO1im /MO PU= 0.1
(b) MOimp /MOPu = 0.5
(c) MO mp /MOPu = 0.9
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Exper iment Theory

(a)

(b)

Figure 4.3. Theory versus Experiment for normal incidence
MSSW arrays on 13.2 umn YIG (2.5-3.5 GHz).
(a) MO.im /MO = 0.1
(b) MO. mp/MOPu = 0.5
(c) MOmP/MOPu = 0.9

imp Pu



Experiment Theory

(b)

(C)

r-igure 4.4. Theory versus Experiment for normal Incidence
MSSW arrays on 15.7 umn YIG (2.5-3.5 GHz).
(a) MO.im /MO PU= 0.1
(b) MO imp/110Pu = 0.5
(c) MO mp /MO Pu a0.9

imp pu
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Experiment Theory

1 dO/div

(a)

1 dB/div

1dO/div

(c)

Figure 4.5. Theory versus Experiment for normal incidence
MSSW arrays on 18.7 u.m YIG (2.5-3.5 GHz).
(a) MO.i /MO = 0.1
(b) Mo.mP/MOPu = 0.5
(c) MOmP/MOPu = 0.9

imp pu
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Experiment Theory

1 dB/div

),a

1 dB/div

(b)

1 dB/div

(c)

Figure 4.6. Theory versus Experiment for normal incidence
MSSW arrays on 22.5 um YIG (2.5-3.5 GHz).
(a) MO /MO = 0.1
(b) MO imPMoPu = 0.5
(C) MOImp/0 pu = 0.9

Imp-- .'
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Figure 4.7. Comparison of experimental and theoretical
notch depths as a function of Implant dose

for the MSSW and MSFVW normal Incidence
arrays.
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object of these experiments was to characterize the

reflectivities, determined by the notch depth, as a function

of implant dose, the theoretical results do not include the

transducer responses.

A comparison of theoretical and experimental notch

depths for corresponding devices as a function of implant

dose is given in Figure 4.7. The experimental notch depths

were small and extremely sensitive to device fabrication

variations, alignment in the magnet, and interaction with

width mode resonances. Width mode resonances have been shown

(4.2) to tune at a different rate than the array resonances,

and large periodic variations observed in the notch depths as

the magnetic bias field was slowly and monotonically tuned,

indicates that width mode interaction is a dominant

contributor to the uncertainty in the notch depths.

Inspite of the measurement difficulties, the

experimental notch depths were in the range predicted by

theory, and a rough correlation between the two is evident in

Figure 4.7.

4.2.2 MSFVW Biased Arrays

The same devices used in the MSSW experiments were

biased for MSFVW operation, and the measured array

.. ~ transmission responses are compared to the theoretical MSFVW

array transmission responses in Figures 4.8 through 4.12. The

theoretical MSFVW notch depths as a function of dose and film

thickness are summarized in Figure 4.7.

"NN*d'~. ~ .' ~
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Figure 4.8. Theory versus Experiment for normal incidence
MSFVW arrays on 12.7 urn YIG (2.5-3.5 GHz).
(a) MO.im /MO = 0.1
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Experiment Theory

4i'4.

(a)

Cb)

2. .l i

(c)

Figure 4.9. Theory versus Experiment for normal incidence
MSFVW arrays on 13.2 u.rc YIG (2.5-3.5 GHz).
(a) MO.im /MO pu= 0.1
(b) MOimp /MO pu = 0.5
(c) MOImp /MO pu = 0.9
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(a)

(b)

Figure 4.10. Theory versus Experiment for normal incidence
MSFVW arrays on 15.7 urn YIG (2.5-3.5 GHz).
(a) MO.im /MO = 0.1
(b) Mo.mP/MOPu = 0.5

imp Pu
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Experiment Theory

(b)

(C)

Figure 4.11. Theory versus Experiment for normal incidence
MSFVW arrays on 18.7 urn YIG (2.5-3.5 GHz).
(a) MO.im /MO = 0.1
(b) MIO.m/MOPu = 0.5

imp Pu
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Figure 4.12. Theory versus Experiment for normal incidence
MSFVW arrays on 22.5 um, YIG (2.5-3.5 GHz).
(a) MO.im /MO = 0.1
(b) MOimp /MOPu = 0.5
(c) MO m/MOPu = 0.9imp pu
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In MSFVW, the energy is concentrated in the center of

the film resulting in weaker reflections from the surface

perturbations induced by the implanted zones. Smaller

MSFVW reflectivities coupled with higher overall insertion

losses compounded the problems encountered in the MSSW

measurements, and the correlation between theory and

experiment is very poor.

In an effort to obtain a more reliable method for

characterizing the relationship between zone boundary

reflectivities and implant dose, it was concluded that many

of the problems could be eliminated by observing the presence

.4. of a signal at the resonance of an oblique incidence array

rather than the absence of a signal at the antiresonance of a

transmission device.

4.3 Uniform Oblique Indcidence MSFVW RAF

Three MSFVW uniform, 20 bar, 450 incidence transversal

filters were fabricated to test the accuracy of the theory

for different implant doses (Figure 4.13). The implanted

reflectors were 100 um wide with 200 um centers in the

propagation direction and a 3 mm transverse aperture. A loop

input transducer was used to suppress the low frequency

uniform spin mode, with a 50 um wide, 100 um center spaced,

3 mm aperture filament. The output transducer was a single

7 mm long, 50 um wide, shorted microstrip, and being

electrically short (X@3 GHz : 40 mm) acted as a summer for

the reflected waves.
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Dose levels based on equation (4.3), acceleration potentials,

and YIG Thicknesses used in these experiments are given in

TABLE 4.2. Films of nearly equal thicknesses were used in

order to investigate the effects of varying implant doses

alone on the observed reflectivities.

TABLE 4.2

BORON IMPLANTATION SCHEDULE FOR THE
UNIFORM 20-BAR OBLIQUE INCIDENCE MSFVW RAF EXPERIMENTS

YIG Dose #1 Dose #2 Projected
Thickness @200eV @70 eV MO. /MO

[um] [cm-] [cm--] mp/pure

22.3 6.0xlO 2.3x1014  0.8

23.0 I.2x0 1 5  4.5x10 14  0.6

23.0 2.9x10 15  l.lxl0 1 4  0.0

Theoretical and experimental results are compared on

identical scales for the three implant doses in Figure 4.14.

The highest implantation dose resulted in extensive crystal

damage, and It was assumed that the impulse model was no

longer valid for this device. This crystal damage has been

observed by others when high implant dose levels were used.

According to SEM investigations, the excessive strain that

results from high implant doses causes cracks to develop in

the ferrite film that span the land regions. Such cracks

exhibit broadband reflectivities that would tend to mask the

response.

The ripple superimposed on the experimental frequency

4%S.
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responses is due to crystal edge reflections. Angle lapping

the crystal edges (20 is typical) helps this problem, but it

is difficult to avoid when insertion losses are greater than

20 dB. Since the signal level of the edge reflections is

independent of the level of the array reflected signal, the

problem is more pronounced in higher loss devices. The two

lower dose experiments showed good agreement with theory in

peak insertion loss, main lobe width, sidelobe suppression,

and sidelobe width. A comparison of the critical parameters

is summarized in TABLE 4.3.

TABLE 4.3

THEORY/EXPERIMENT FOR THE
UNIFORM 20-BAR OBLIQUE INCIDENCE MSFVW RAF's

MO. Peak I.L. Sidelobe Main Lobe Sidelobe
imp Suppression Width Width

MO (dB] [dB] [MHz] [MHz]pure __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _

0.8 36.5/37 13.3/12 42.0/40 21.0/20

0.6 30.5/29 13.3/13 42.0/45 21.0/22

0.0 22.6/25 13.3/NA 42.0/50 21.0/NA

This preliminary investigation indicates good agreement

between experimental ion implanted MSFVW reflective arrays

and a theory based on the magnetostatic approximation and an

impulse model. The assumption that a bar-gap interface can be

modeled as a simple wave impedance discontinuity in a plane

wave structure is verified. It was shown that ion implanted

reflectors work well for MSFVW transversal filters, avoiding
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sharp discontinuities encountered with etched grooves that

cause fringe field coupling to vertical spin waves. A more

complete characterization of the effect of implantation dose

on saturation magnetization would be desirable.

4.4 Delay Graded Oblique Incidence MSFVW RAF

4.4.1 Positive Delay Slope Array

A 450 incidence, boron implanted MSFVW RAF was designed

for a linear group delay of 600 nsec/GHz on the basis of the

impulse model and constructed (Figure 4.15). The array

consisted of 61 implanted reflector zones with a uniform 3 mm

transverse aperture. A double dose boron implant with an
IW, -2

initial fluence of 5.56x10 cm at 70 KeV followed by

-2
1.46x10 at 200 KeY was used, corresponding to a projected

uniform step reduction in the saturation magnetization of 50%

to a depth of 0.36 um. The implanted reflectors varied from

0.082 mm to 0.192 mm in width along the propagation

direction, obtaining the maximum bandwidth possible for

Aunsectioned bars without harmonic overlap. A loop input

transducer was used to suppress the uniform spin mode, with a

50 um wide, 100 um center spaced, 3 mm aperture filament. The

output transducer was a single 19 mm long, 50 um wide shorted

microstrip.

"4 Theoretical and experimental S2 amplitude and group

delay results are compared in Figure 4.16 on identical

scales and are quantitatively summarized with the design goal

in TABLE 4.4.



114

AV

oI

II

Figure 4.15. Experimental layout for the positive delay slope
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TABLE 4.4

QUANTITATIVE COMPARISON OF RESULTS FOR THE

POSITIVE DELAY SLOPE OBLIQUE INCIDENCE MSFVW RAF

DELAY INSERTION LOSS

Slope @ 3.2 rms @ 3.1 @ 3.2 TBW
[nsec GHz ripple GHz GHz PRODUCT
/GHz] [nsec] [nsec] [dB] [dB]

DES. 600.0 120 --- free free free

THY. 590.0 120 5.69 40 47 77.4

EXP. 605.7 100 8.22 33 47 77

The experimental insertion loss shows a peaking at the

lower frequencies that is not predicted by-the theory. This

effect is attributed to the frequency response of the

electrically long output transducer (. = 19 mm and A3GHz =

3 cm), which was modeled as electrically short in the theory.

Use of a lower permitivity substrate material such as quartz

should eliminate this problem. A greater rms deviation from

linear is expected in the experimental results with the

effects of crystal edge reflections added to the Fresnel

ripple anticipated by theory. Sandblasting was used on the

crystal edges to reduce reflections, but angle lapping and

poleface end beveling have subsequently been shown to be more

effective for this purpose. A 6 MHz wide moving window

average was used to smooth out the effects of noise and edge

reflections in the group delay data, which are the cause of

the sharp spike like ripple. The original data is shown in

the insert of Figure 4.16b. Delay slopes and intercepts for

. . . . . . .." . " ". .• " .
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the theory and experiment are in satisfactory agreement,

allowing for uncertainties in array alignment and film

thickness, both of which could add curvature or absolute

delay to the overall response. The sudden retrace in the

experimental group delay at about 3.4 GHz is a computer

artifice and not a characteristic of the experimental device.

The location of this sudden retrace and the number of such

retraces is determined by the value of the aperture variable

in the HP-11863D software.

4.4.2 Negative Delay Slope Array

An MSFVW RAF with a negative-slope group delay is

considerably more difficult to realize, because it opposes

the intrinsic dispersion characteristic of the ferrite film.

According to the impulse theory a negative-slope device is

possible, but the resulting bandwidths and insertion losses

are not as good as those obtainable for a physically

comparable positive-slope array.

A 45 incidence, unapodised MSFVW RAF with a group

delay of -600 nsec/GHz was synthesized according to the

impulse theory and fabricated (Figure 4.17). A single 3 mm

long, 50 um wide shorted microstrip input transducer was

used to maximize bandwidth and minimize insertion loss. The

output transducer was a 50 um wide. 19 mm long shorted

microstrip. The array consisted of 110 boron implanted

reflectors of equal length. A double dose implant identical

I.%
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'Ad

Figure 4.17. Experimental layout for the negative slope,
linear group delay MSFVW RAF.
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to that used for the positive-slope experiment was used,

yielding a 50% reduction in saturation magnetization in the

surface layer.

The experimental transmission frequency response and

group delay were measured with extended averaging and are

compared to the theoretical design in Figure 4.18. These

results are quantitatively summarized in TABLE 4.5.

TABLE 4.5

QUANTITATIVE COMPARISON OF RESULTS FOR THE
NEGATIVE DELAY SLOPE OBLIQUE INCIDENCE MSFVW RAF

DELAY INSERTION LOSS

Slope @ 1.75 rms @ 1.65 @ 1.80 TBW
[nsec GHz ripple GHz GHz PRODUCT

* /GHz] [nsec] Ensec] [dB] (dB]

DES. -600.0 125 --- free free free

THY. -600.0 125 --- 49 49 30.8

EXP. -500.0 225 --- 55 50 17.0

In this particular experiment, it was necessary to use AHmin

= 1.0 Oe in the Gilbert loss model to make the theoretical

insertion loss correspond to the experimental value. This

variation is within the range expected for these films. The

experimental amplitude spectrum has a 200 MHz bandwidth,

comparing favorably to the theoretical bandwidth of 225 MHz.

The passband slopes down slightly toward the lower

frequencies, and is probably due to variations in the film

thickness and quality along the length of the array. Other
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experiments have shown that mild surface quality variations,

such as flux spots, can greatly affect the reflectivity of a

surface Implant. A 6 MHz wide moving window average was used

to smooth the group delay data so that the linearity and

slope could be sorted out of the ripple caused by edge

reflections and noise. The original group delay data is shown

in the insert of that figure. Reasonable linearity was

obtained in the experimental group delay, subject to severe

interference by edge reflections. The experimental delay

*slope of 400 nsec/GHz is within an acceptable range of the

design value of 600 nsec/GHz.

4.5 Summary of Basic Array Types

Large insertion losses at the bottom of the

transmission resonances that characterize the frequency

response of normal incidence MSSW transmission arrays render

these devices extremely susceptible to interference by edge

reflections. The resonance notches tend to be only a few

decibels deep, and the overall insertion loss is sufficiently

high to allow the edge reflections on a terminated crystal to

be a significant portion of this notch depth. The resulting

ambiguity in the measurements, makes a reliable determination

of the relation between reflectivity and implant dose

impossible.

Conversely, significant correspondence was obtained

between theory and experiment with the oblique incidence

MSFVW RAF's. The principle causes of differences were process
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control, crystal alignment in the bias field, and

extraneous signals such as noise and edge reflections.

With typical observed insertion losses in excess of

30 dB in the MSFVW oblique incidence arrays, crystal edge

reflections place a severe limitation on ultimate device

performance. Even on a well terminated crystal by the

standards of transmission devices with less than 20 dB of

insertion loss, minute edge reflections are still a

significant part of the signal received at the output

transducer in a reflection device with large array losses.

This problem can be addressed either by establishing more

effective ways of terminating crystals than those currently

in use such as angle lapping and bias field gradation, or by

developing reflectors with higher reflectivities. The

reflectivities obtainable with ion implantation are limited

by the catastrophic crystal damage that accompanies doses

15 -2
much in excess of 10 cm Other approaches that yield

large reflectivities, such as metal bars or etched grooves,

suffer their own limitations. Metal bars exhibit such large

reflectivities that the incident beam cannot penetrate very

deeply Into the array, cutting down on the usable size of

the structure and hence the obtainable time-bandwidth

product. In the course of generating large reflectivities,

etched grooves create fringe fields that couple heavily to

transverse spin wave resonances, thus punctuating the

passband with deep periodically spaced notches. The results
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from these approaches indicate that better ways of

eliminating edge reflections should be investigated rather

than seeking to increase reflectivities.

Witi the 450 incidence MSFVW RAFs, the problem of edge

reflections is intensified by the large receiver transducer

that essentially bisects the crystal. Reduction of the size

of the output transducer requires recompression of the beam.

This is usually done by employing a double bounce array, but

this also doubles the reflection loss of the array, which is

unacceptible with lossesalready in excess of 30 dB. The next

chapter describes a method of reducing the output transducer

aperture by compressing the signal beam with a single

reflection.

Other sources of loss in these devices such as

propagation and mismatch loss should ultimately be addressed,

but are of secondary importance in the sense that reducing

them will not effect the relative interference by edge

reflections. Propagation losses place an upper bound on the

usable array length, and therefore limit the time-bandwidth

product obtainable. Lower loss ferrites are the answer to

this problem, and currently better results have been reported

by others (4.4) using different melt compositions. Coupling

losses can be effectively eliminated by matching at the

microstrip ports, but 50% of the launched power is still

discarded at both the input and output transducers due to

bidirectional losses.
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CHAPTER 5

ELLIPTICAL GEOMETRY ION IMPLANTED MSFVW RAFs

5.1 Elliptical Array Concept

5.1.1 Operating Principle

One way to recompress the reflected beam in an oblique

incidence RAF is to curve the reflectors into a lens, with

the focal point at the output transducer. There are a

multsiplicity of reflector shapes that would serve this

purpose, but for simplicity these lens structures should,

" correspond to the same input-to-output path length

at every point along their length, and

" couple to the same wavelength at every point along

their length.

Both of these requirements are satisfied by confocal

elliptical reflectors, with circular input and output

transducers, centered at the respective foci (Figure 5.1). By

definition, all wavelets originating at a focus of an ellipse

that arrive at the other focus after executing equal angle

reflections off the ellipse (MSFVW is isotropic) trace

identical path lengths, regardless of what part of the

ellipse they reflect from. Secondly, the differential path

length between reflections from confocal ellipses is constant
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Figure 5.1. Elliptica) array concept.
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regardless of the points on either ellipse at which the

reflections occur. Thus, the effective reflector width of an

implanted zone whose boundaries form consecutive nested

ellipses is the same at all points along the reflector.

Circular transducer filaments centered on the foci do

not introduce phase distortion, as they subtract a fixed

radius from all trajectories. The size of the transducers can

be arbitrarily chosen to satisfy alignment and electrical

requirements. Reflector apodization is achievable by varying

the angular projections onto the circular transducers.

5.1.2 Advantages of Elliptical Arrays Over Conventional

Arrays

Conventional 450 incidence arrays are characterized by

a minimum obtainable insertion loss of 6 dB, due to the
N

bidirectionality of the input and output transducers. Half of

this lost power could be salvaged by placing an identical

array and corresponding receiver behind the input transducer,

but this would require a ferrite film that is twice as large

and would necessitate coupling the separate receiver

transducers in phase. With confocal elliptical arrays, the

transducers are naturally surrounded by the array structure,

eliminating all of the 6 dB bidirectional loss. Also, since

the prereflected and postreflected legs of the trajectory are

approximately equal, a confocal elliptical array of radius,

R, is equivalent to a linear array of length, 2R. This yields

space advantages if only one hemisphere is used.
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The confocal elliptical geometry reduces the effects of

edge reflections in several ways. The contoured structure

provides spacial filtering that discriminates against

reflections from the crystal edges and local imperfections.

Divergence in the radiated circular wavefronts reduces signal

intensity at all points on the crystal, except at the

receiver focus where the array reflected signal is

selectively intensified. Output transducers can be made as

small as 1 mm in diameter while keeping crystal alignment

feasible. These small output transducers make better summers,

and present a much lower crossection to unwanted signals. Use

of point image radiators conforms to the intrinsic

characteristic of the medium so that fringe fields correspond

to the desired radiation.

A barrier must be placed between the input and output

transducers, sufficiently large to completely shadow the

output from direct radiation. Conventional array structures

require a similar barrier to prevent off-axis wavefronts from

directly illuminating the output transducer, but cannot be

placed to completely eliminate the problem. In the elliptical

geometry, a small centrally located barrier (sandblasted

spot) is sufficient to completely eliminate direct

breakthrough, without interfering with the array operation.

If the right and left hemispheres of the array are

complements of each other (photographic negatives), and the

output transducer is held symmetric while the input

%
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transducer is designed to radiate 1800 out of phase into

these hemispheres (or vice versa), then a barrier is not

needed. Complementing an array is equivalent to interchanging

Z1 and Z2 in the reflection coefficients for the interfaces,

and introduces a sign change in the reflected energy. If the

transmitter antenna launches inverted signals into the

complementary reflector halves, the reflected signals from

the two sides arrive in phase at the receiver and add.

Signals in the opposing hemispheres that arrive at the output

via a direct path are still out of phase and cancel in the

receiver transducer. Unfortunately this mechanism cannot be

used to further discriminate against edge reflections since,

typical wavelengths are only about 300 um long and only a

half wavelength of transverse misalignment in the crystal

results in a complete rotation of the relative phase between

signals reflected from opposite crystal edges. Even if exact

alignment were possible, the crystal edges are not identical,

and variations in their reflective properties would generate

a difference signal at the output.

When a center barrier is used, arrays that occupy

different, possibly contiguous, frequency bands can be

located in the opposite hemispheres of the structure. If the

filament gaps on the two sides of the input transducer are

tuned to the corresponding frequency bands, the overall

filter bandwidth can be broadened. This effect can be

realized either geometrically or by a transverse step

-k ee dL
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discontinuity in the magnetic bias field.

5.2 Experiment versus Theory for the Elliptical Arrays

5.2.1 Mirror Symmetric Confocal Elliptical Array

A uniform, symmetric confocal elliptical array was

designed and implanted on a 20 um YIG film, using the double

dose schedule for 50% reduction in saturation magnetization.

A mirror symmetric array of 48 reflectors on each side of the

elliptical cavity (Figure 5.2a) was boron implanted on a 20

Um YIG film and placed face down on the 250 um thick alumina

microstrip substrate. All reflectors in the uniform array had

effective widths of 150 Um and included equal projections

onto the radiated beam. The elliptical contours were

approximated using off center circles, fitted so that the two

exact points divided the ideal elliptical sector into equal

parts. The transducers were identical circular 30 Um wide

gold loop filaments with 0.65 mm radii centered on grounded

metal spots (Figure 5.2b) located at the foci of the confocal

ellipses. The foci were separated by a center spacing of

4 mm, allowing a practical minimum path length for reflection

from the innermost reflector of 5 mm. Neglecting metal

losses, the boundary conditions on the grounded center spot

are such that the magnetic field vector reflects without

inverting. Thus, the transducer filaments were spaced

radially out from the center spots by 150 um, corresponding

to a half of the center wavelength for a reflected round trip

phase length of 3600. Further shadowing of the output
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transducer was affected by indenting the center spots by an

additional 75 i4m (X0/4) in the arc subtending the oppos:ng

loop, so as to make this region antiresonent in the operating

band of the filter and avoid wasted radiation that would

degrade the insertion loss. The 250 um wide, 50 0 feeder

microstrips were brought into the cavity through openings

radiating from the foci at the respective perigees. No waves

originate at the back of the circular transducers where the

feeder connection is made, so reflectors are not required

*, there.

The experimental transmission response for a symmetric

elliptical array is compared to the theoretical curve on

identical scales in Figure 5.3. A main lobe width of 50 MHz

was experimentally realized, with a minimum insertion loss

26 dB. Measured near in sidelobe levels were 13 dB down from

the peak, as expected for a boxcar spacial distribution.

Sidelobe widths of 25 MHz on the low side and 20 MHz on the

high side were obtained. While these are roughly half the

main lobe width predicted by theory, the antisymmetry is in

excess of what is expected due to curvature in the dispersion

curve. A clearer understanding of the cause of sidelobe

antisymmetry is obtained in section 5.2.4. The measured

transmission characteristics are subject to a variety of

experimental factors such as array alignment, implant zone

definition, ferrite film thickness, etc., and in light of

such imperfections, they compare favorably with the

.'
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corresponding theoretical figures.

Comparison to the similar 450 incidence array results

obtained earlier, verifies that improved rejection of crystal

edge reflections was realized by this design. Notch depths

between the lobes are less distinct due to the reflector

width modulation accompanying the circular approximation to

the elliptical contours.

5.2.2 Complementary Confocal Elliptical Array

*A complementary 48-bar elliptical array pattern was

generated by photographically reversing one hemisphere on

the array mask for the mirror symmetric design (Figure 5.4).

The complementary pattern was boron implanted on a 20 um YIG

-film using the double dose implant for 50% reduction in the

saturation magnetization, facilitating comparison to the

performance of the symmetric device. A monopolar circular

transducer with the same design as those used in the

symmetric device was placed at one of the elliptical foci,

and a dipolar circular transducer, as shown in Figure 5.4b,

was used at the other focus. With the transducer center spot

grounded, the conditions for resonance of the dipolar

configuration are the same as for the monopolar type, so the

radii of the center spot and filament loop were made the

same.

The complementary symmetry makes a center barrier

unnecessary, and designing the connection of the filament tz

A . r %
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the center spot so that it fills the arc subtended by the

opposing transducer provides additional suppression of direct

breakthrough.

The measured transmission response for the

complementary filter is compared to the theoretical response

in Figure 5.5a. The main lobe width, minimum insertion loss,

and sidelobe rejection are consistent with the values

predicted by theory, within the expected range of

experimental variation. As with the mirror symmetric array,

an antisymmetry occurs in the sidelobe widths that is not

sufficiently explained by the curvature of the dispersion

relation alone, and is reviewed in section 5.2.4.

Figure 5.5b indicates that the array performance is not

observably altered by the use of complementary symmetry.

Suppression of ripple due to edge reflections is

significantly improved over the conventional array designs,

as was obtained with the symmetric elliptical array.

5.2.3 Apodized Elliptical Array

". In order to test the ultimate potential of the MSW RAF

technology for signal processing applications, a 100 MHz wide

boxcar spectral response was synthesized, as shown in

Figure 5.6. The impulse model of equation (2.46) was used to

represent the array transfer characteristic In equation

(3.12). Phase was specified to correspond with the average

delay path in the array. The problem was simplified toa

po
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linear set of equations by selecting a recursive structure

of equal effective width land and bar sections, corresponding

to round trip path differentials of 150 um for reflections

from consecutive elliptical interfaces. For simplicity, all

parts of the spectrum received equal emphasis by selecting a

constant weighting function, w(f). The semicircular loop

transducers at the input and output had 150 um filament

center-to-center spacings and circular radii of 0.5 mm. .Use

of loop transduscers helped to suppress the uniform spin

mode, sidelobe levels and first array harmonic. The zero path

transfer characteristic for the single loop transducer pair,

G m(f)G n(f), was taken directly from Wu (5.1) and accrued the

- -* 2
same value for all reflectors, Gm(f)Gn(f) = IG(f)I . The

values obtained for the weighting coefficients, [p M,

represent the angular projections of the respective

reflectors onto the semicircular input transducer loop. The

resulting array is shown in Figure 5.7 with the transducer

structures superimposed. A double dose Implant yielding a

40% reduction in saturaton magnetization (MO imp/MO pure=0.6 in

TABLE 4.2) was used to pattern the array. Negative reflector

contributions were obtained by offsetting the corresponding

reflectors by an effective path length of half a wavelength,

150 um. The ratio of the largest to the smallest tapping

factor was limited to 20, as this value was easily realized

while keeping the minimum reflector lengths longer than the

midband wavelength. This relatively large tap ratio is one of
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* Figure 5..Array for the boxcar channel filter synthesizeC
using an elliptical array of boron ion implanted

* reflectors.
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the features made possible through the use of an elliptical

geometry.

A comparison between the measured response and the

theoretical design is given in Figure 5.8. The synthesized

array response is visible in the center of the experimental

photographs. Except for edge reflections and direct

breakthrough, excellent agreement was achieved between the

theoretical array response and the measured response. Midband

insertion loss for both is about 47 dB, spanning

approximately equal bandwidths of 100 MHz. Out of band

rejection, measured from the top of the skirt at the the band

edge to the bottom of the skirt, Is about 20 dB in the

experiment as predicted by theory. The undesired breakthrough

contributions in the experimental photographs can be

identified as edge reflections (those that tune) and

dielectric coupling between the input and output (those that

do not tune, and typically smoother). The lobes on the left

of the array response in the experimental result are due

primarily to edge reflections. The smoother trace on the

right of the array response is due to dielectric mode

breakthrough.

This experiment indicates that Improved crystal edge

terminations are required, such as terbium doping, to reduce

the contributions of edge reflections to the out of band

response. Also, a complimentary array and transducer symmetry

would greatly reduce the dielectric mode contributions.

WNW= =E*& q '
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Figure 5.8. Boxcar channel filter.
(a) Theoretical frequency response.
(b) Experimental frequency response.
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An unapodized array was concurrently fabricated with

the same reflector placements in order to indicate the effect

of the apodization, as shown in Figure 5.9. The measured

frequency response of the unapodized array is compared to the

theoretically predicted frequency response in Figure 5.10.

The experimental response exhibits the correct lobe structure

and shape as indicated by theory. The insertion loss of the

highest lobe on the left side of the response is

experimentally about 32 dB, compared to 30 dB predicted by

theory. Both theory and experiment show a roll-off of about

2 dB in the highest right.hand lobe relative to the left hand

one. This roll-off is due to the natural increase in the MSW

loss factor at higher frquencies, in conjunction with reduced

transducer coupling efficiency as frequency is increased. The

lobe and notch levels in the experimental result differ

slightly from the predicted values due to coherent

interaction with the edge reflections. As the magnetic bias

field is tuned, the observed lobe levels ripple up and down

as the resonances corresponding to the edge returns are swept

past them.

*. This experiment further verifies the effectiveness of

the theoretical model and demonstrates that the boxcar

response in the apodized experiment is in fact the product of

apodization. Even with improved edge terminations, the

characteristically large insertion losses limit the

practicality of magnetostatic devices for filter realization.

NN
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Fi gure ".9. Unamodized array mask.
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5.2.4 Grounded Center Spot Circular Transducers

An investigation of the efficiency of the center

reflector in the circular loop transducers was conducted, by

unfolding the design into a hairpin with a grounded center

pad (Figure 5.11). This scheme eliminated the signal

degradation associated with circular beam divergence, and

allowed the use of a wide selection of ferrite strips from

past delay line experiments.

A single 30 um wide, 3 mm long grounded microstrip

transducer was used as an analyzer, separated from the device

under test (DUT) by a I cm delay path. The OUT consisted of a

1 mm center-spaced, 3 mm aperture, standard loop transducer

configuration, with a 0.97 mm wide grounded metalic finger

centered in the filament gap. The resulting 150 um gap

between the filament and the center pad on both sides of the

loop corresponds to the half wavelength spacing used in the

circular designs.

The measured transmission response for this test

structure is shown in Figure 5.12a, along with the

theoretical ly predicted response of a I mm centerspaced loop

transducer with no center barrier, in Figure 5.12b. The

similarity between these results indicates that the grounded

center barrier is nearly transparent to the reverse radiated

energy, allowing signals from both transducers to interact

and notch the transmission passband. Although surface

metal izations provide relatively strong reflections when they

l4
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A

Figure 5. 11. Test structure for the circular transducers
used in the elliptical arrays.
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'a) Measured transmission response.
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are used in a RAF context, the weak coupling to surface

disturbances of volume concentrated energy distributions such

as MSFVW yields reflectivities that are insufficient for use

in mirror applications.

Placement of the array response off center in one of

the lobes of the bifurcated transmission response of the

grounded center barrier transducers would truncate one

sidelobe more than the other, explaining the antisymmetry

seen In the elliptical array experiments. A unidirectional

circular transducer design would improve the correspondence

of the uniform array performance with theory, and is

essential for broadband elliptical geometry filter

applications.

5.3 Unidirectional Transducer Designs

5.3.1 Edge Reflector UDTs

Crystal edges approximate an open circuit to MSWs, as

the electronic spin currents that support magnetostatic

propagation abruptly vanish there. Experimentally they are

known to produce good broadband reflections to the extent

that they are a significant problem in most devices. In order

to represent a good mirror plane, as is required in an edge

reflector UDT, the reflectivity must be nearly unity.

A simple 3 mm wide, 1 cm long delay line was used to

evaluate the unidirectional performance of a single-filament

30 um wide grounded microstrip, placed parallel to a cleanly

Ii "
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cut crystal edge. The analyzer was an identical single

filament transducer, situated well away from the ends of the

YIG strip so as not to interact with them. The 20 um YIG film

was placed face down on the 250 um thick alumina microstrip

substrate, and magnetically biased for MSFVW propagation.

Several experimental transmission responses are shown

in Figure 5.13, representing different filament spacings from

the crystal edge. The last of these results corresponds to a

spacing equal to a quarter of the center band wavelength, and

indicates that a sharp crystal edge exhibits sufficient

reflectivity to simulate a unidirectional loop transducer

response. Implementation as a circular transducer would

involve drilling or etching center spots in the YIG at the

foci of the elliptical array. Alignment of these center

reflectors inside the filament loops would be critical,

requiring concentricity to within a fraction of a wavelength.

Although it provides unidirectionality, this technique is

characterized by a notch at the lower edge of the passband

and exhibits higher insertion losses than obtained with a

true loop. The notch is believed to be due to a fourth order

transit involving an edge-transducer-edge reflection

sequence. Higher insertion losses are the result of

electromagnetic radiation by transducer fringe fields that

reach beyond the immediate crystal edge. This additional loss

mechanism subtracts from the gains accrued through the

elimination of bidirectional loss.
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5.3.2 Phased Array UDT

Magnetostatic phased array UDTs have been demonstrated

in the past (5.2). An alternate realization consisting of two

elements driven in quadurature and spaced by a quarter of the

MSFVW centerband wavelength on a 20 um thick YIG film was

designed and fabricated (Figure 5.14a). Single bar 30 um wide

shorted microstrip transducers were located 0.5 cm in front

and in back of the DUT to analyze the forward and reverse

radiation. The phased array consisted of two 30 um wide, 3 mm

long microstrip filaments terminated by 50 0 open circuited

stubs. These served to rotate the reflection coefficient at

the load end of the filaments a sufficient amount to place

the driving point reflection coefficients on the imaginary

axis (Figure 5.14b). At this point, a series quarter wave

stub in one leg was used to obtain an equal current split

between the elements with a quadurature phase relationship.

On the Smith chart, this condition Is represented by a purely

real driving point impedance at the feeder split. Matching

can be Incorporated into the design by selecting the

termination stubs and transducer lengths at the center

wavelength so that the filament spirals on the Smith chart

terminate at the intersection of the 0.5 conductance circle

with the imaginary reflection coefficient axis. Conjugation

by the series quarter wave stub places the driving point of

the forward filament at the opposite intersection of the 0.5

conductance circle with the imaginary reflection axis. This

~ ~N-
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60
(a)

Figure 5.14. Phased array UDT.
(a) Transducer pattern.
(b) Smith Chart representation.
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yields a parallel combination at the feeder split of 50 0.

Experimental measurements showing forward radiation

superimposed on reverse radiation for three different devices

with respective termination stub lengths of 2 mm, 3 mm, and

4 mm are given in Figure 5.15. These stub lengths were chosen

in the vicinity of the value predicted for ideal open stubs,

providing an empirical determination of the best length.

Tuning the magnetic field changes the relationship between

the electrical microstrip lengths and the MSW length of the

filament gap, and each device was thus tuned for maximum

unidirectionality. For this particular film thickness, 3 mm

stubs provided the required transformation to the mmaginary

reflection axis, yielding greater than 15 dB of directivity

over a 500 MHz bandwidth centered on 3.7 GHz. Improvements in

forward insertion loss are realized as a dividend due to a

reduction in driving point mismatch and reduced MSFVW

backscattering, but are only on the order of about 3 dB,

making the difference difficult to see on a device with an

initial insertion loss of 20 dB.

Figure 5.16 shows the driving point impedance for the

optimal device on a reflection display, spanning a 500 MHz

sweep centered on the maximum directivity. The refrence plane

was placed at the point where the feeder microstrip splits

into the two transducer filaments. This measurement

illustrates the transformation of the input reflecticn

coefficient to the real axis. The device achieves a moderate

' .... , -. -. - ,-. T _ -. -.- -. ". ". k .> . ' '."A.
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(a) 2 mm termination stubs.
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match over this region and passes through an exact match at

the center wavelength.
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CHAPTER 6

CONCLUSION

6.1 Normal Incidence Experiments

Theoretically projected notch depths for the ion

implanted normal incidence transmission arrays ranged from

*0.5 dB to 12 dB for the MSSW biased devices. Projected notch

depths for comparable MSFVW arrays were only about 2 dB less,

indicating a significant Interaction of the centrally

concentrated energy distribution with the boundary conditions

at the film surface. Comparison of the field distributions in

Chapter 2 to those generated by Damon and Eshbach (1.1) for a

free ferrite slab, demonstrates that introduction of a ground

.4: plane extends the energy distribution more uniformly over the

film cross section, resulting in greater coupling to surface

aberations. Experimental comparisons of unimplanted and

uniformly implanted transmission responses show that doses

sufficient to reduce the saturation magnetization by 50 % in

the surface layer increases propagation losses by about 5 dB

accross the frequency band for MSSW and about twice that

amount for MSFVW. The physical effects of Implantation on the

ferrite must be better understood In order to explain this

unexpected result.

Correspondence between theoretical and experimental

'S notch depths was marginal for MSSW due to interaction with

%L



158

edge reflections. Higher intrinsic insertion losses and edge

reflections are characteristic of MSFVW. This, coupled with

increased degradation in the propagation loss from

implantation, rendered the notches in these experiments

unobservable.

Effective characterization of implanted zone

reflectivities by normal incidence transmission measurements

would require either improved techniques for crystal edge

termination or a multiple measurement algorithm to

discriminate against edge reflections. An increase in element

reflectivities would also improve notch visiblity in the

presence of edge reflections. Reflectivities, however, are

bounded by available acceleration potentials and an upper

limit on the dose levels achievable.

Resonators are the primary application of normal

incidence arrays for which the anisotropic propagation

characteristics of MSSW are essential. Implanted reflectors

do not offer any substantial advantages in this context, as

etched grooves have been shown to perform well with MSSWs and

are essentially free of limitations on the reflectivities

obtainable.

6.2 Oblique Incidence Experiments

Except In resonator applications, oblique incidence is

more applicable for realizing general filter functions and is

better suited to performance characterization in that it

involves measurement of the presence of a signal rather than
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its absence. The oblique incidence ion implanted array

experiments showed generally good agreement with theoretical

predictions, although some variation In absolute Insertion

losses was observed among comparable devices. These

differences are expected as the result of unavoidable film

growth variations, array fabrication tolerences, and bias

field al ignment errors. Of key importance was the accurate

prediction obtained for the amplitude shape factor across the

frequency band in terms of relative lobe levels, widths, and

locations. The impulse model was shown to be sufficiently

accurate for use in the synthesis of simple delay graded

filters. With insertion losses typically in excess of 40 dB

for these broadband devices, the 60 dB noise floor of the

analyzer made it essentially impossible to obtain clean

responses. Processing the group delay data with a five point

moving window average took advantage of the zero mean

characteristic of the noise and allowed a reasonable

comparison of the experimental results with theory. For the

positive delay slope device, the midband Insertion loss was

45 dB for both theory and experiment, and the theoretical

delay slope was 590 nsec/GHz compared to an experimental

value of 605.7 nsec/GHz. The experimental midband insertion

loss for the negative delay slope device was 52 dB compared

to a predicted value of 50 dB, and the experimental delay

slope was -500 nsec/GHz compared to a theoretically predicted

value of -600 nsec/GHz.

..........................................................................
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Increased reflectivities were attempted using the

smaller H+ implant species, but no observable surface

manifestation or experimental reflectivity was obtained. It

was concluded and later verified by others that this

particular ion does not efficiently disrupt the crystal

lattice. However, results published by Volluet (6.1) and

4 +
Volluet and Hartemann {6.2) using He + , indicate that a

considerable improvement in implant zone reflectivity can be

realized by utilizing the higher doses (>101 ions/cm 2 )

possible with the smaller species without accumulating

excessive strain in the regions between the implanted zones.

Strain buildup in these intervening regions seems to result

in a broadband reflection contribution that masks the desired

array response.

6.3 Elliptical Geometry Arrays

Elliptical geometry reflectors are just one of many

potentially useful configurations for reflective array

filters. For example, parabolic reflectors could be used to

realize an impedance transformer filter, by using an

arbitrary length (but electrically short) straight bar

transducer at the input and a circular "spot" transducer on

the output, located at the focus of a graded confocal

parabolic reflector array. Until recently, exotic structures

such as this have been relatively uncommon due to limitations

on mask cutting techniques. Currently the computer technology

has made sophisticated pattern generating and mask cutting
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utilities available, and the planar devices being made are

reflecting this, for example, in the growing use of curved

microstrips.

Contoured reflectors access the designer to complex

spacial filtering functions that can be utilized to

discriminate against spurious signals on the substrate. In

particular, use of elliptical contours was shown to reduce

the peak-to-peak ripple due to edge reflections appearing in

the transmission response of uniform magnetostatic filters.

The ripple was reduced In a 30 dB insertion loss device from

2 dB to 0.5 dB due to the use of elliptical reflectors. These

arrays provide considerable design flexibility, including the

use of electrically short input and output transducers

without requiring a double bounce array, Immersion of the

radiators In the array structure for the elimination of

bidirectional losses, and the ability to mask direct

transmission through the use of complementary array

hemispheres.

A by-product of the investigation of contoured arrays

was the development of broadband unidirectional phased array

transducers for MSFVW. The 15 db to 20 dB bidirectionality

over nearly 500 MHz obtained for these devices offers a

multitude of applications in conventional structures, and was

found to be essential for broadband elliptical arrays.

6.4 Recommendations For Future Study

The principal application in which MSW ion Implanted
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arrays offer some limited practical potential is oblique

incidence compressive filters. Ground plane contouring Is a

preferred technique, characterized by 20 dB insertion losses

over 500 MHz bandwidths compared to Insertion losses of 50 dB

over maximum bandwidths of 250 MHz for reflective arrays.

Reflective arrays cannot compete with transducer arrays In

the fabrication of low loss spectral weighted filters, and

etched grooves are capable of higher reflectivities allowing

superior performance In resonator applications. In the

context of oblique Incidence compressive filters, Implanted

reflectors perform comparably to metal stripes without the

conductive losses. Implanted reflective arrays, however, are

characterized by relatively narrow bandwidths, small time-

bandwidth products, and high insertion losses. Reflectivitles

are difficult to predict due to a considerable sensitivity to

film surface quality. Although MSW RAFs promise little hope

of ever equaling the performance of SAW devices (6.3, 6.4,

6.5), they have the advantage of operating In the 1-20 GHz

frequency range and of magnetic tunability.

Future investigations should focus on improved crystal

edge terminations, larger crystals and higher doses of

smaller ions, such as 4He+• to enhance the ratio of array to

edge reflected signals. Contoured reflectors should be

incorporated, as they have been demonstrated to yield a

reduction in Interference by edge reflections, In addition to

providing other significant advantages.
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7.0 MILLIMETER WAVE ISOLATORS BASED ON FIELD DISPLACEMENT IN DIELECTRIC

IMAGE GUIDES

At microwave or millimeter wave frequency range, ferrite materials

play important roles in the design of nonreciprocal devices. Devices

applying ferrite materials can be divided into two classes: devices for

which the ferrite is tuned to Ferromagnetic or ferromagnetic resonance

(FMR) and devices which are magnetically tuned away from FMR.

Experimental work on a dielectric imageline guide loaded with ferrite

was first conducted in 1976 [7.1). The results showed that imageline guide

when loaded with a ferrite can behave as a field displacement type

isolator. A simplified version of imageline isolator called ferrite loaded

stripline isolator was analyzed. This type of isolator much easier to

analyze theoretically and can give us an understanding of the working of

the more complicated imageline isolator.

Experiments have been carried out on image line isolators utilizing

epitaxial YIG on gadolinium Gallium Garnet at 90-100GHz. These experiments

have shown that the concept is feasible but that ferrite materials with

high magnitization are desirable for practicle devices.

7.i MM WAVE FIELD DISPLACEMENT ISOLATOR THEORY

A pure dielective waveguide is reciprocal, ie. its field distribution

ri the t'rsnsverse directions are symmetrical for both forward and reverse

rcropautatina waves. A piece of ferrite added to the edge of the dielectric

4aveguidt ,:! distort the field distribution and make them asymmetrical

F,;r the two directions of wave prooagation. Therefore, a loaded waveguide
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possesses a degree of nonreciprocity, and this is the property which is

employed in a Field displacement isolator.

For millimeter-wave application, a dielective image line guide [7.2]

[7.31 [7.41 is preferred for low conductor loss. In 1976, an image line

loaded with ferrite was utilized to demonstrate field displacement

isolation at 61.25GHz. Isolation of l1db and insertion loss of 3db was

observed. The design was partly theoretical and partly empirical.

Analytical solutions to the image line problem are very difficult.

The crossection and transverse fields of an image line isolator is

shown in Fig. 1. The solution of this problem is a very complex one.

We did not try to find the numerical solutions of this problem at this

point in time. Instead, we concentrated on a simplified version of the

isolator (Fig. 2) called ferrite loaded stripline isolator.

For the stripline isolator (Fig. 3), we concentrate on TE modes, the°no
field components of which are uniform in y direction, the direction of the

DC magnetic field. Because of coordinate change and including

demagnetization Factor, the polder tensor of the form:

1Ul 0 ju2
U = 110o  1 0

j H 0 u22

rM fr-M N + [r(H - N M )]}oZ 0 Y'D
U ------------------------------------ + -

(rH + r(N - N ) M 0 (rH + r(N - N ) M 0 - W2r0 x y Mo o z y o

rM frH + N rM )
u . . . . . . . . . . . . . . . . . . . . . . . . . . + 1

(frH + r(N - N M I (rH + r(N N / M -W
A / ' o V 0

*f*?4A'
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w~r N
0

22 (rH 0 + r(N X - N Y) M ) (rH 0+ r(N z- N Y) M 0 W

Field components E Y, H zneed to be matched on the interfaces between

different regions and are expressed as

E (1)(X) =A 1 e jKI x + B d- k Ix

E (2) (X) A e ejK 2 x + B2 d-jk 2 x

E (3)(X) A 3 e-n(x-a) + B 3 e(x-a)

E (4 (X A e n(x+a)

E Y (X) A 6 en a)

I at
Hz ---------- U2 (uE - U1 1- - ---- )

jW U 1.2 - )2 ax

~(XI = j 1  A jk x + 81 ekX]

H z 2 X W ---------- I - ( I e ~K IAejBke

(2) ~ (ii u u-j
jWU 0 (U11122 - U2+ (SU 2 + juj1 1 K 2  82 e-j 2 x

H (3 n (A3 e n(x-a) B 83 er(x-a)1

fl(x+a)
Hz(4) /ne A4

n(x-a-d)
A6r

Boundary conditions require that

E (-a) E (-a)
Y(4) yMl

H (-a) =H (-a)
Z(4) z(4)

E (a-'s) =E (a-s)
I) ~Y(
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H z( (a-s) = H z(2)(a-s)

Ey( 2 )(a) = Ey(3 )(a)

Hz(2)(a) H z(3)(a)

E (a+d) E (a+d)y(3) : y(6)E (ad

H z(3)(a+d) Hz(6) (a+d) =-y-3 -

where Z is the sheet resistance for the restive film.

Eliminating the amplitude unknowns, we obtain the dispersion relation
A

equation F(B)=0. Since loss mechanism are included in the calculation, all

the wavenumbers must be replaced by complex variables which are written as

A
I=KIr + li KIr' K > 0,

A
r2 = K2r + JK21 K2r, K2i 0

A
n nr + ini  nr !, n i i,

S= B - ja a- > 0.

A A A
The parameters k K2' n, are related to as

A 12 + 92 d K2

A 0

2 + A2 =  eff f K 2

+  A, K 2
2

By Newton-Rapson Method, numerical solutions are obtained.

For 94 Ghz application, low linewidth Ferrite material should be used.

Hence YIG is attractive. Figure 4 shows the results of numerical

craculation For YIG. We can see that for DC magnetic Field close to the

r-,Ondrnc,2 poifnl: (-n we observe significant difference in transmission loss
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for two directions. The large DC magnetic Field required is due to the

fact that magnetization of YIG is low, 1760oe. The use of ferrites with

higher magnetization is essential For practicle devices.
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Figure 1. Transverse field representation in an image line Isolator
(a) Transverse field for a typical dielectric guide;
(b) Transverse field for the forward-transmission case of

ferrite loaded guide;
(c) Reverse-transmission case.
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4 1 2- 3 6

h __________Metal Plane

& C d oC

-a 0 a-6 a a+d

Figure 2. Strip Line Isolator
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7.2 EXPERIMENTS ON MM WAVE FIELD DISPLACEMENT ISOLATORS.

Experimental work on W-band propagation characteristics of YIG-GGG

dielectric image line under a DC magnetic Field has been carried out in

order to evaluate non-reciprocal propagation characteristics which can be

used to develop W-Band Field displacement isolators.

A Hughes S-parameter test system (Fig. I) was used to measure the

scattering coefficients of the test structures.

* I1! S PLA I- PORI I

_ 5- PAPAMET WEVERIDE

W-BAND
" tf{HE$R TEST SET- . I "I YIG-G'G

aIF. CODIT/ L 2 FIELD

SET

Display ------------------------------- HP8410, HP8412

W-Band Synthesizer -------------------- Hughes 4785

Test Control Unit --------------------- Hughes 786H.5000

S-Parameter Test Set ------------------ Hughes 4786HX

FIG. I A S-PARAMETER TEST SYSTEM

Thitial studies were conducted utilizing a section of W band waveguide with

the too and side walls milled out 0.750 inches in the longitudinal

.jirect'on (Fig. 2). The bottom wall served as a ground plate of the

- mage ;ire. With no samole in Place, the insertion loss of the

"r ,_'ur *as C5'Jb. Tesr samples were inserted in the open enjs of the
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waveguide. This modified waveguide was connected to the W band S parameter

test set and a DC magnetic field applied to the opening area utilizing a

Harvey-Wells 12" electro-magnet with pole pieces tapered to a 0.75"

diameter, 0.75" gap. Fields of up to 35KG could be obtained.

(3/4")

.. ---

FIG. 2 WAVEGUIDE TEST STRUCTURE

The samples used were typically fabricated from 25 micron thick, liquid

phase epitaxy YIG (Yttrium Iron Garnet) films grown on 0.5mm thick

substrate of GGG (Gadolinium Gallium Garnet). Samples were angle lapped to

optimize coupling into and out of the waveguide as shown in Figure 3.

Optimum angles for minimum insertion loss were determined experimentally.

The insertion loss of these samples was as low as 2.5db (0.1db/rrwm or

0.75db/wavelength).

27mq _____

_5oo- - -°IG

2CS~r SUSTRATE

.... :AMPLE: - _'A PLF N .E .-NE CR X .NE

Rl:]HT: 3AMPLE 114 THE E-PLANE (OR YZ PLANE)
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Typically. the YIG-GGG sample was placed at the center of the open ground

plane and adjusted slightly to minimize the insertion loss.

The following coordinate system was used to define the experimental

configurations (Fig. 3).

X ----- The wide side of the metal waveguide.

Y ----- The narrow side of the metal waveguide.

Z ------ The wave propagation direction.

XZ corresponds to the H-plane of TE10 wave.

YZ corresponds to the E-Plane of TE 10 wave.

S -.-.- ' .'
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Figure 4 shows S21 and S12 of a H-plane YIG sample for different

values of H (The DC magnetic field is in X-direction).~x

As H increases S2 1 becomes smaller over the entire 90-100GHz band.

As the magnetic field exceeds 30KGs a "NOTCH" begins appear in the band and

there was 5-7db difference between S 12and S2 eosrtn h

nonrec iproca 1 effect.

_,s"" ---_ .. . - " ...

W 'ECU IDE

1 2 4

1@Q/D!U!H10HZ)

"~~~~~ -. ,4 VTP -<"ff

J1 4

4 1F i-LAE G SAMPLE 41TH 7HE DIFFERENTH
.. 3. 'JK. .: 4. -" .-"

• o.o -- . .-- .-,.. ..... .
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If a gold film (500R) absorber is Placed directly the top of the YIG

sample S 1 and S 21are shown in Fig. 5. The "NOTCH" turns flat and the

difference between S 1 and 5,becomfes small.

1 3 4

190I/DIUMHR2

i~db/U(VEt ~ H=Hx

I2GN/DI U( ORZ)

FIG. 5 S 12AND S 21FOR H-PLANE YIG WITH THE GOLD ABSORBER

WITH THE VARYING HX

1. 32KGs; 2. 32.5KGs; 3. 33KGs; 4. 33.5KGs

p.A
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Fig. 6 shows the S 21 of E-plane YIG under with an H . Like the

Proceeding when H yis near resonance (for 90GHz Ho-=32KGs) there is a

"NOTCH", a very strong absorption, in the band.

Significant absorption occurred in both propagation directions. Since

the DC Field was perpendicular to the H-plane the absorption was much

stronger than in the first case. S12 was almost identical and an absorber

Produced additional attention in both directions.

IIF

21 Y

121

.SIM.
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Fig. 7 shows the S and S12 of an E-plane sample under the different

values of DC Field. Again, there is strong absorption and 52I and S are

quite similar.

GGG ,VIG

UIOUND

le/ldiv DC 4-FIELD INE-PLANE XGs.
REF. _ - -- ,_ - _ -_ REF,

ag,.

9eG 92.5Gf 95GH

I&IB/div DC -FIELD IN E-PLHE HGs.
REF, P EF.

I 
-- -\

'?KH 92.5Gi 95Q

FIG. 7 THE E-PLANE YIG-GGG SAMPLE UNDER A DC H .
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Figure 8 gives the results for E-plane Y!G-GGG sample which shows S12

and S 2*A 50OR chrome film absorber under varying H Y

I'' DC !.-FIELD IN E-PLPNE i<CS.

90H92.5GH 95GH

19~b/.iu %C M- F I LD IN P-LA HE

9e6J4 92.5GH

FG.8 1AND S 12E-PLANE YIG-GGG WITH A CHROME FILM ABSORBER

ON THE YIG SURFACE.

The non reciprocal effect is small. (<5db).
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Figure 9 Shows the same configuration but with a 330fl-cm, 0.016"1 thick

silicon wafer spaced 0.010" from the YIG surface.

Isdb/aiv DC M-FIELD THE-PLANE XQs.
REF.

99CN 92.5GN 95G1

loa,iaiv DC N-FIELD IN E-PLANE iXQ.
REF. REF.

KH~ 9 25 CH

FIG. 9 S 21 AND S 2OF AN E-PLANE SAMPLE

AND A SILICON (p=330nlcm)

0. 0OKGs
1. 32.0 KGs
2. 32.5 KGs
3. 33.0 KGs
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W9 YIG ABSORBER

i;ROND

iadb/diu DC M-FTlDi IN 'E-PLANE XQ- .
IEF. RF

92.5CH 95GH

l~cldiiJ DC 4-FI.ELD IN E-PLflNE X
REFrr

92.5GH- 95GI-

Fioure 10 5, and 5 of an E-plane sample
21 ~ 12

as in Figure 9. P=800cm.

As can be seen 3,and S change sharo1v with freauency. and 5, and
21 12

c.are sianificantly different.

I L
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Figure 11 shows the S 12and S 21with the same conditions as in Figure

9, except that the silicon wafer is on the other side of the YIG-GGG

sample. (i.e. The silicon wafer is not facing the surface of the YIG.)

1 JIb/ ai DC N-FIELD IN E-PLANE Kas.
REF. REF.

10ah/djq, DC N-FIELD IN E-PLANE K~s,
REF. REF.

7W~afl92,4r

;7[G. 11 S 21AND S 12OF AN E-PLANE SAMPLE WITH A SILICON ABSORBER

OPPOSITE TO THE YIG FACE.

1. 32 KGs
2. 33 KGs

'4 1A



Figure 12 demonstrates the 
effect of distance 

between the sample 
and 18

the absorber on S 21 andS 2

Y!C SILICON

GG

GROUND

I~3~ -i. DC M- 7, W N Z-FLANE 2- kGs.
ALRU.

2

1a'av DC ?I- FIELD IMG-L-E; ~.

FIG, 12' THE EFFECT OF THE DISTANCE BETWEEN THE SAMPLE

AND THE ABSORBER ON S AND IS
21 ~ 12*

1. x 0 M

2. 0. 3 m
3. 0.5 M
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CONCLUSIONS

The experimental results demonstrate that the YIG-GGG dielectric image

line, whether the YIG Film is in the E- or H-plane, has non-reciprocal

characteristics for magnetic fields applied parallel to the YIG film

surface. The non-reciprocal effect is significantly enhanced if an

absorber of the proper resistivity and properly spaced from the YIG surface

is added.

In all cases, the effect is at or near ferromagnetic resonance. For a

practical W-band field displacement isolator it is desirable to operate the

ferrite away from the ferronagnetic resonance. For YIG, with a saturation

magnetization of -2000 Gauss, the DC magnetic field for the Field

displacement effect at 100GHz should be around 32,700 Oe with corresponding

ferromagnetic resonance at 97GH. Thus, it is difficult to see a "pure"

Field displacement effect. More desirable is a ferrite material with 5000

Gauss saturation magnetization, and small linewidth. Then the DC Field for

100GHz will be about 31,300 Oe which, corresponding to the resonance at

87.6GH, allowing a displacement dominated device. Thus low linewidth, high

magnetization epitaxial ferrites are essential For MM wave isolators.

Also, the bandwidth will increase with increasing magnetization. Finally,

further optimization of the structures is required for performance

improvements.
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8.0 SUMMARY

Detailed theoretical and experimental investigation have been carried

out on ion implanted oblique incidence magnetostatic reflective array

filters. Correlation between theory and experiment has been good.

The principal application in which MSW ion implanted arrays offer

some limited practical potential is oblique incidence compressive filters.

Ground plane contouring is a preferred technique, characterized by 20 db

insertion losses over 500 MHz bandwidths-compared to insertion losses of

50 db over maximum bandwidths of 250 MHz for reflective arrays. Reflective

arrays cannot compete with transducer arrays in the fabrication of low loss

spectral weighted filters. In the context of oblique incidence compressive

filters, implanted reflectors perform comparably to metal stripes without

the conductive losses. Implanted reflective arrays, however, are characterized

by relatively narrow bandwidths, small time-bandwidth products, and high

insertion losses. Reflectivities are difficult to predict due to a

considerable sensitivity to film surface quality. Although MSW RAFs promise

l'ittle hope of ever equaling the performance of SAW devices, they have the

advantage of operating in the 1-20 GHz frequency range and of magnetic tunability.

Theoretical and experimental studies of MM wave isolators based on

field displacement in ferrite coated dielectric waveguides shows significant

promise. Using a YIG on GGG structure an W-band isolator has been built and

tested with isolation of > 20 db and an inseration loss of 5 db. The band-

width is narrow (< 1 GHz) and bias field high (Cl 32 KG). With higher

magnetization materials superior devices are feasible and i ntergration with

other components in a dielectric waveguide format is possible.
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APPENDIX A

WAVE IMPEDANCES

VX
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A.1 MSFVW Characteristic Impedance

The wave impedance is defined as the ratio of transverse

electric field to transverse magnetic field,

~- e (A.1.I)

Z +
- h-

) x

Small letters are used to denote the time varying part of the

total fields, with separable harmonic time dependence,

exp~jwt}. (A.I.2)

Using the magnetostatic approximation, the spacial harmonics

are separable in x and y, and neglecting z variation have the

form,

(Aexp[yx] + Bexp[-yx]) exp(±jky] (A.I.3)

Subject to these constraints, the two sides of Faraday's law

are,

x y z -jke z

- a a a ae

curlCe) ax ay az ax

ae 8e
" 0 0 e y ×

z _ L-ax ay

and, (A.1.4a)

1 0 0 h h
-x

-Jwu oh =-ju 0 )j -jU 2 = -jU Llh ju 2 h0 0 JU 0JU[h h]

w h oJ mbJin y + 
elhlz

~which combined yield,
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i-j k e~ [ z

aez
77 =j~ l - juj2h z(A.I. 4b)

ay a[ LjU2h y+ ju1hZ

Lax ay

The characteristic impedance follows directly from the x-

equat ion,

= I , (A.1.5)
k

and is the familiar form characteristic of uniform

0crossection wave guides.

A.2 MSSW Characteristic Impedance

The MSSW characteristic impedance can be calculated

from Faraday's law,

- =h
curl (e) = -U u (A.2.1)

and the known forms of the field solutions,

= (Cexp[yx] + Dexp[-yx]} exp(+jky]
h.6 - (A. 2. 2a)
hx = (Fexpyx] + Gexp[-yx]) exp(+jk,y]

In the absence of a current density within the ferrite,

and neglecting dielectric anisotrophy, Ampere's law,

curl (h) = E - (A.2.3)

&0 a
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indicates that the time varying component of the electric

field points in the z-direction,

eZ = (Aexp~yx] + Bexp(-yx]) exp[+jk~y] (A.2.2b)

normal to the plane of Incidence in which the time varying

part of the magnetic field is located.

It is assumed that terms of like x-dependence

independently satisfy the boundary conditions at the

interfaces between reflector and land regions. Without this

constraint, the boundary conditions would cause the

x-dependence of field solutions in the reflector regions

to appear In the solutions of the land regions, which is true

only In close proximity to the Interfaces between these

regions. Detailed matching of the boundary conditions by

like terms, Is equivalent to neglecting the transition zone

around the Interface, modeling the fields as though they

exhibit a small abrupt discontinuity there. Subject to these

constraints, the components of Faraday's law are,

X Y z +jk+

- a a a aez a aez a - ~
curl(e) = x = x - - = + y ez

0 0 ez 0

U [A Iy- = o 0[l Ux h10Io* t - ~ 0 il.2  1 Ojh 0  jUi2hyL 0 0 L0 0 0~

1 1111 1 ill I
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yielding,

(12 - h)±/~~O e /. (A.2.4)

Refering to equation (A.2.2), it should be noted that + and -

in front of y refer to top and bottom surface waves,

respectively, and in front of k forward and reverse waves,

respectively. The subscript signs on k emphasize that the

waves are anisotropic and should be the same as the sign in

front of k. Solving this set of linear equations for the

ratio of the transverse electric field, ez, to the transverse

magnetic field, hx , gives the characteristic Impedance,

2 2e e z  W*Uo0(U - 'J2 )

(A.2.5)
hx ±k i ± YU2

The various possible combinations of signs and their meaning

are summarized in TABLE A.

TABLE A

GENERALIZED MSSW CHARACTERISTIC IMPEDANCES

BOTTOM SURFACE (-y) TOP SURFACE (+y)

2 2 2 2
FORWARD 1j - u2 ) WUo(Uj - u 2 )

(+k+) k.U I - YU2  k-IU + a U2

2 2 2 2
REVERSE WU0 (.a - u 2 ) 1 (U - u2 )

(-k_) k4Ul + YU2 k~ul - yU2

'M2 ±Ui
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The magnetostatic approximation implies that,

curl Ch) = 0, (A.2.6a)

which leads to,

-y = k4, (A.2.6b)

from which the values in TABLE 2.4 are obtained.
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APPENDIX B

REFLECTION AND TRANSMISSION COEFFICIENTS
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The reflection and transmission coefficients at an

interface are a direct consequence of matching the tangential

boundary conditions there. Consider the wave In Figure B.I,

impinging normally on the boundary between anisotropic

regions " " and "c", characterized by the forward (+) and

0 reverse (-) wave impedances, Z- and Z-, respectively.

Medium-, Medium-C,

,' ,\

Figure B.!. Reflection and transmission at an interf~ace.
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Satisfaction-of the tangential magnetic and electric boundary

conditions in the absence of free charge or sheet currents at

the Interface yields,

--

e+ e e+ e

(B. 1)

h + h =h + h

where, the transverse fields are used. The first equation is

expressible in terms of the transverse magnetic field, via

the characteristic Impedance,

e e
Z + - - e (B.2)

h h
Vj V

as follows,

ZhE +Zh Zh . (B.3)

The equations (B.1) and (B.3) can be rewritten In accordance

with being the excitation and h and h the unknown

scattering products,

-Zh +--Zh =Zh

(B.4)

h + +h h

and subsequently solved for the ratios of reflected and

transmitted h-fields to the incident field, to obtain the

reflection and transmission coefficients, respectively,
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i= i+
, - + )

hE Z Z Z-+ = (B.5)

h - i+ -+i

- I Z Z+i~+ 1 Z1+Z

The reflection and transmission coefficients for the electric

field can be obtained from these from the definition of the

characteristic impedance, resulting in additional scale

factors,

-i+ i+ +_ 1 +

• E hz I E Iz -
--- - . :L -- -I-

+ + + 1+ zZEh Z z .+Z

(B.6)

~+- i i+ i- +

Z h Z Z+ -- I

The reflection and transmission coefficients for reverse

propagating waves are obtained from the above by replacing

by C and + by

4p

i
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APPENDIX C

COMPUTER PROGRAMS



196

C.1 Normal Incidence MSSW Array Analysis

The listing in this section represents the theory used

to predict the normal incidence MSSW array responses, based

on the characteristic impedances derived In APPENDIX A and

superposition. The main program calculates the dispersion

relation from the four layer model for both the implanted and

the unimplanted sections, and then calls the array function

program written by Brinlee (2.24) which performs the

necessary matrix manipulations to generate the transmission

and reflection responses. Ferrite losses are calculated in

terms of the Gilbert loss model, resulting In a complex

dispersion relationship,

k = -a,

corresponding to assumed propagation of the form,

expfj( (t - ky)).

The program is self contained and requires no other souces of

data than that indicated by the "User Supplied input"

sections.

~"
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C -
C PROGRAM DESCRIPTION:
C
C THIS PROGRAM CALCULATES THE COMPLEX DISPERSION RELATION FOR
C
C 1) ION IMPLANTED MSSW,
C
C 2) UNIMPLANTED MSSW.
C
C THE ASSUMED FORM IS,
C
C EXP(J(WT-KY)).
C
C CORRESPONDING TO A DISPERSION FACTOR OF THE FORM,
C
C K x BETA - JOALPHA.
C
C- --------------------------------------------------------------------
C
C SET UP CONSTANTS AND DECLARE COMPLEX AND REAL----------------------

COMPLEX J,CHO,GAMFO,GAMFI,GAMRO,GAMRI,K1,K2,K3,K4,
1GAMMAE2KU,E2KD,FOFKFO,FOFKRO,FOFKFI,FOFKRI,COSHKV,SINHKV
REAL MO
OPEN(UNIT:23,DEVICE='DSK',DIALOG)

Pl:3.115927
J:CMPLX(O.O,1.0)

GYRO:17.6E+06
MO1760.0
ZERO:1.OE-04
FRACT=I.OE-O4

C
C- -------------------------------------------------------------------
C USER SUPPLIED INPUTS
C- --------------------------------------------------------------------
C
C IMPLANT DEPTH (MICRONS)- -------------------------------------------

TYIGIMO.4
C
C YIG THICKNESS (MICRONS)- -------------------------------------------

TYIG=13.50
C
C ALUMINA SUBSTRATE THICKNESS (MICRONS)------------------------------

TAL203z250.O
iJ C

C MULTIPLIER FOR IMPLANTED MO (MOIMP/MOPURE) ------------------------
STRAINz0.5

C
C INTERNAL BIAS FIELD (OERSTEDS) ------------------------------------

HO375.0
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C
C GILBERT LOSS PARAMETERS (FO IN HERTZ AND DELTA-H MN IN OERSTEDS)-

FO=3.OE.O9
DHMIN=O .5

C DESIRED FREQUENCY INCREMENT IN OUTPUT DATA (MHZ)--------------------
DELF:2.O

C
C DESIRED START AND STOP FREQUENCY IN OUTPUT (GHZ)--------------------

FSTART=2.50
FSTOP=3.50

A BOUNDz-20.0
* C

C
TTIGIM:TYIGIM'1 .OE-06
TYIGPUz(TYIG'1 .OE-06)-TYIGIM
TAL2O3=TAL20391 .OE-06
VSTARTzFSTART*2.OE+0g*P1
VSTOP=FSTOPO2.OE+09*Pl
DELWaDELF02.OE+06*PI
W=WSTART-DELW

C
C MAKE AN INITIAL GUESS ON GAMMA---------------------------------------

GAMF~zCMPLX(O .0,0.0)
GAMFI :GAMFO
GA MR 0.GAM FO
GANRI zGAMFO
GLASTs-1000. 0

11111 W=W*DELW
F:V/(2.0*P1)

C
C CALCULATE GILBERT LOSS TERMS-----------------------------------------

DELH:DHMINO(FO/FF/FO)/2.0
CHOzCMPLX (HO, DELH/2 .0)

C
C CALCULATE PERMITIVITY RELATED CONSTANTS FOR FORWARD PROPAGATION--

1(1:1.0 + STRAINOMO/(CHO - /GYRO)
K2=1.0 + STRAINOMO/CCHO e /GYRO)
1(3:1.0 + MO/(CHO - /GYRO)
K(4=1.0 + MO/C CHO * /GYRO)

C
C INCREMENT NEWTON RAPHSON ON FORWARD UNIMPLAN'rED GAMMA--------------

D02 112=1,200,1
SINHKVv-J*CSIN(CJ*GAMFO*TAL2O3)
COSHKVxCCOS(JOGAMFOOTAL2O3)
E2KU=CEXP (2. OGAMFOTYIGIM)
E2KD=CEXP (2.0 GAMFOOTYIGPU)
FOFKFOx(KZI.1.O)(3OCOSHKVSINHKI)SE2KUOE2KD

I -(1(3-1.0)*(K4*COSHKV-SINH(V)
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IF(CABS(FOFKFO).LE.ZERO) GO TO 1000
GAMFO=CLOG((K3-1.O)*(KL4eCOSHKV-SINHKV)

1 /( ((4.1 .O)*(K3*COSHKV4.SINHKV) ))/(2.0*(TYIGPU.TYIGIM))
CIRExABS(REAL.(GAMMA-GAMF0))
CHIM=ABS(CAIMAG (GAMMA-GAMFO))
OLDRE=ABS(REAL(GAMMA) )
OLDIM=ABS(AIMAG(GAMMA))
IF(CHRE.GT.FRACTOOLDRE) GO TO 77
IF(CHIM.LT.FRACTOOLDIM) GO TO 1000

77 GAMMA=GAMFO
2 CONTINUE
WRITE(6,31) FGAMF0,CHRE,CHIM

31 FORMAT(11,'FREQ a ',1El0.3,5X,'GAMFO z ',2(El0.3,1X),4X,
1/,lX,'CHRE ',lElO.3,5X.'CHIM z',lElO.3)
STOP

C
C INCREMENT NEWTON RAPHSON ON FORWARD IMPLANTED GAMMA----------------
1000 D03 113=1,200,1

SINHKVz-J4CSI.N(J*GAMFI9TAL2O3)
COSHKV=CCOS(JOGAMFIOTAL203)
E2KU=CEXP (2. OIGAMFIOTYIGIM)
E2KD=CEXPC2.0*GAMFIOTYIGPU)
FOFKFI:(K4.1.0)4C(K3-Kl)4 (K2OCOSHxV-SINHKV)

-?1 .(K2.K3)'(KI 6 COSHKV.SINHKV)'E2KU)'E2KD
2 -(13-1.0)*{(K1.K4)'(K2'COSWfKV-SINHKV)
3 *(K4-K2)UCKl1C0SHKV.SINHKV) *E21CU)
IF(CABS(FOFKFI).LE.ZERO) GO TO 2000
GAMFI:CLOG((K3-1.0)4(CKl.K4)*(K2*COSHKV-SINHKV)

1 .(K4-K2)C(Kl*COSHKVSINHKV)OE2KU)
2 /((K4.1.0)0((K3-Kl)0 (K26 COSHKV-SINHKV)
3 *CK2.K3)'CKl'COSHKVSINHKV)'E2KU)))
4 /(2.OGTYIGPU)
CHRE=AS CREAL.(GAMMA-GAMFI))
CHIM=ABSCAIMAG (GAMMA-GAMFI))
OLORE :A S (RE AL (GAMMA) )
OLOIM=ABSCAIMAG(GAMMA))
IF(CHRE.GT.FRACTOOLDRE) GO TO 88
IF(CHIM.LT.FRACTfOLDIM) GO TO 2000

88 GAMMAZGAMFI
3 CONTINUE*
WRITE(6, 32) F,GAMFI, CIRE,CHIM

32 FORMAT(1X.'FREQ = ',lEl0.3,SX,'GAMFI a',2CE1O.3.1X),4X,
1/,1X,'CHRE 2'.lEl0.3,5X,'CHIM ',1E10.3)

STOP
C
0REDEFINE PERMEABILITIES FOR REVERSE PROPAGATION---------------------

2000 1(1:1.0 + STRAINOMO/(CHO *W/GYRO)

K2:1.3 STRAINOMO/(CHO W/GYRO)
K(3=1.0 * MO/(CO W /GYRO)
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K4xl.O + M0/(CHO - U/GYRO)
C
C INCREMENT NEWTON RAPHSON ON REVERSE UNIMPLANTED GAMMA -- ---

D04 '.K4=1,200,1
SINHKVz-J'CSIN (JGCAMROOTAL2O3)
COSHKV=CCOS(JOGAMRO*TAL2O3)
E2KUaCEXP( 2.OOGAMROTYIGIM)
E2ICDaCEXP (2.OOGAMROOTYIGPU)
FOFKROx(KM1.0Y*(K30COSHKV+SrNHKV)IE2KUOE2KD

1 -(K3-1.0)*(KL4COSHKV-SINHKV)
IF(CABS(FOFKRO).LE.ZERO) GO TO 3000
GAMROaCLOG((K3-1.)(K4*COSHKV-SINNKV)

1 /( ((4.1 .O)*(30COSHKV.SINHKV)) )/(2.O'(TYIGPU.TYIGIM))
CM RE2aABS (R EAL (G0AMMA-GAMRO) )
CHIM: ABS(CAIMAG(CGAMMA-GAMR ) )
OLD RE sA 5CR EAL(CGAM MA) )
OLDIM sABSCAIMAG(CGAMMA )

IF(CHRE.GT.FRACTIOLDRE) GO TO 99
IF(CHIM.LT.FRACTDOLDIM) GO TO 3000

99 GAMMAzGAMRO
4 CONTINUE
WRITE(6,33) F,GAMRO,CHRE,CHIM

33 FORMAT(1X,'FREQ x '.1EIO.3,5X,'GAMRO z ',2(E10.3,1X),'IX,
l1/,X,'CHRE z ',lE1O.3.5X,'CHIM z ',lE10.3)
STOP

C INCREMENT NEWTON RAPHSON ON REVERSE IMPLANTED GAMMA-----------------

3000 D05 IK5x1,200,1
SINHKVx-JOCSIN (JOGAMRIOTAL2O3)
COSHKV=CCOS (JOGAMRIOTAL2O3)
E2KUsCEXP (2.0 GAMRIOTYIGIM)
E2KDzCEXP (2.OOGAMRIOTYIGPU)
FOFKRlz(K4.1.0)O(CK3-Kl)*(K2*COSHKV-SINHKV)
1 .(K2.K3)6(K1UCOSHKV.SINHKV)OE2KU)OE2KD
2 -(1(3-1 .0)O((Kl.K4)*(K2'COSHKV-SINH(V)
3 ,(14-K2)*(K1COSH(VSINHKV)E2CU)
!F(CABS(FOFKRI).LE.ZERO) GO TO 4000
GANRI:CLOG((K3-1.0)'((1(1K4)(K2*COSHKV-SINHKV)
1 *(KL-K2)(KI*COSHKV.SINHKV)OE2KU)
2 /((K4.1.0)0((K3-K1 )'(K2*COSHKV-SINHKV)
3 *(K2.K3)0(KlCOSHCVSINHKV)E2CU)))
4 /(2.O#TYIGPU)
CHRE=ABSCREAL(GAMMA-GAMRI) )
CIIMzA8S(AIMAG(GAMMA-GAMRI) )
OLDRE: ABS(CREAL (GAMMA )
OLDI~zA8S(AIMAG(GAMMA) )
IF(CHRE.GT.FRACT#OLDRE) GO TO 66

IFCCHIM.LT.FRACT#OLDI4) GO TO 4000
66 GAMMA=GAMRI
5 cONT:TNUE

Q,~r ' i ...
1
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WRITEC6,34) FGAMRICHRECHIM
34 FORMAT(1X,'FREQ a ',1ElO.3,5X,'GAMRI z ',2(E1O.3,lX),NX,

1/,lX,'CHRE *',lEl0.3.5X,'CHIM x',1E10-3)
STOP

41000 FREQ:F/1 .OE.O9
C WRITE(6,1O1) FREQ.GAMFI.GAMRI,GAMF,GA4RO

101 FORMATCl.1XF6.3,11(5X,iF1O. 1,1X,1F1O.1))
X:ARRAY(FREQ,GAMFI,GAMRI,GAMF0,GAMRO)
XYZz20000. 0
IF(X.LE.BOUMD) WRITE(23,103) XYZ

103 FORMAT(lX,lF9.1)
* IF(X.LE.BOUND) STOP
* WRITE(23,102) FREQ,X

102 FORMAT(lX,lF6.3,5X,1F1O.3)
IF(W.LT.WSTOP) GO TO 11111
STOP
END
FUNCTION ARRAY(PRSNTF,GFI,GR1.GF2,GR2)

C-----------------------------------------------------------------------
C PROGRAM DESCRIPTION:

* C
C THIS PROGRAM CALCULATES THE RESPONSE OF A NORMAL INCIDENCE
C MSSW ARRAY OF N IDENTICAL BAR/GAP SECTIONS. THE OUTPUT IS
C INSERTION LOSS IN DS VERSUS FREQUENCY.
C
C------------------------------------------------------------------------
C

COMPLEX GFI, GR1, GF2, GR2, .3, ZF1, ZR1,ZF2, ZR2, TZ,
iTA, TB, TC, TD, ZW, TAUR, Ti, T2, T3, T4, TZRt EIGNDF, EIGNN,
2RHOR. V1, V2, V3, V4, Z1, Z2, Z3, ZN, Z5, Z6, Z7, Z8,
NEIGNI, EIGN2, EIGNN1

C
C --------------------------------------------------------------------
C USER DEFINED INPUT:
C----------------------------------------------------------------------
C
C "WIDTH1" IS THE BAR WIDTH IN (MICRONS)--------------------------

WIDTH 1 210.0
C
C "WIDTH?" IS THE GAP WIDTH IN (MICRONS)---------------------------

WIDTH?. 100 *0

C "N" IS THE NUMBER OF BAR/GAP SECTIONS----------------------------
N:46

C
C-----------------------------------------------------------------------

Pl:3.11115926
MX59
IF:0O

" 4 ~ . " <
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ROFAN~zO *

RORANGzO. 0
J :CMPLX CO.0, 1.0)
UM=PI*4.OE-O3

C
C DETERMINE STRUCTURE LENGTH---------------------------------------

GF I JIGFl /100.0
GRlz-J9GR1/l00.O
GF2xJ*GF2/100.O
GR2z-JOGR 2/100.0
FuPRSNTF01000.0
Wz2.0*PIO*1 .OE+06

C CALCULATE IMPEDANCES..............................................
C

ZF1zJ*UM*F/GFI
ZF2xJlUM*F/GF2
ZRl1zJ 'UMOF/GR 1
ZR2xJ*UMIF/GR2

C
C SET UP TRANSMISSION MATRICES FOR TWO SECTIONS------------------
C

TZsZF1-ZR 1
VlxCEXP(GFIOWIDTH101.OE-0I)
V2xCEXP (GF26WIDTH2*1.OE-O4)
V3=CEXP(GR16WIDTH101 .OE-04)
V~zCEXP(GR2#WIDTH21.OE-0&)

I' ~Z 12 CZF1 6 V1-ZRl1*v3 )/TZ
Z22(ZF18ZR10(V3-Vl ))/TZ
Z32(Vl-v3 )/TZ
Z'uCZF1 *V3-ZR1 *V1)/TZ
TZaZF2-ZR2.
Z5z(ZF2*V2-ZR2V4I)/TZ
Z62(ZF2*ZR2*(V4-V2) )/TZ
Z7:(V2-V4I)/TZ
Z8zC ZF2*V4-ZR2*V2)/TZ

C
C CASCADE MATRICES TO OBTAIN ONE ARRAY SECTION--------------------
C

TlzI 1Z5*Z2*Z7
T2mZ1 Z64Z24Z8
T3Z3oZ5*Z4*Z7
T4sZ34Z6*ZL4Z8

C
C COMPUTATION OF LIGENVALUES OF MATRIX----------------------------

EIGNl:CTl1..CSRT((Tl.T4)*2-4z.00(TlT4-T2OT3)))/2.0

EIGNN*EIGNI##4NEIGN2**N
EIGNDF2E:GNl-EIGN2
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C
C CALCULATION IF EIGENVALUES ARE APPROXIM4ATELY EQUAL-------------

C
IF(CABSCEIGNDF).GT.1.OE-C6#CABS(EIGN1)) GO TO 5

TAs(N.1EIGM10NNT4'EIGN1*-(N1l)
TBxMT2*EIGN1**(N-I )
TCzNMT3*vIGN1**(N-1 )

GO TO 51
C
C RAISE MATRIX TO NTH POWER---------------------------------------
C

5 TAx(EIGMN-EIGNNIT'4)/EIGNDF
TB. (EIGNMNT2 )/EIGNDF
TCx(EIGHNNT3)/EIGNDF
TDs(EIGNN1-EIGNN*T1)/EIGNDF

C
C INVERT ARRAY AND SPACING MATRICES------------------------------
C

51 TZRaTAOTD-TB*TC
Vi .TD/TZR
V12 a-TB/TZR
V13 a-TC/TZR
V4I zTA/TZR

C
C DETERMINE TRANSMISSION AND REFLECTION COEFFICIENTS--------------
C

ZWzZR2*Vl*V2-ZF20(VI*ZRZov3)
TAURz( ZR2-ZF2)/ZW
TAURMGsCABS(TAUR)
IF(TAURMG.GT. 1.0) TAURMGzl.O
IF(TAURMG.LT.O.1) TAURMGzO.1
ARRAYs20.O*ALOGlO (TAURMG)
RETURN
END
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C.2 Normal Incidence MSFVW Array Analysis

This program is essentialiy the same as the one in

section C.1, except that the main program calculates the

MSFVW dispersion relation from the four layer model for

implanted and unimplanted delay sections before calling the

array function program written by Brinlee {2.24) that

determines the array transmission response. The dispersion

calculation includes the Gilbert loss term resulting in a

complex propagation constant of the form,

k = 0 - jo,

based on propagation in the y-dlrectlon of the form,

exp{j(wt - ky)}.

This program is self contained and only requires the data

indicated in the "User Supplied Input" sections.

"pV
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C * e*O***eOs*e*.O es*s**e*s*...O*..*

C PROGRAM DESCRIPTION:
C THIS PROGRAM CALCULATES THE LOSSY DISPERSION RELATION FOR
C A FOUR-LAYER FLIPPED CONFIGURATION GEOMETRY (ALUMINA THICKNESSa
C TAL2O3, TOTAL YIG LAYER THICKNESS :TYIG, DEPTH OF IMPLANTED YIG

*C LAYER x TIM P, MO (IMPLANTED YIG )/MO(UN IMPLANTED TIG ) a RATIO).
C THE DISPERSION IS CALCULATED FOR THE IMPLANTED CASE (GAMMAI) AND
C FOR THE UNIMPLANTED CASE CGANMAP)--BOTH WITH THE SAME TOTAL TIG
C THICKNESS.
C
C
C DIMENSION COMPLEX AND REAL VARI ABLESIOOOf* ''0600000000

COMPLEX J,ETAI,ETAP.GAMMAI,GAMMAP,CHO,FOFKI,FOFKP,DFDXIDFDXP,
ISINHKV,COSHKV,SINKXCOSKXXP,DGAMAP,DGAMAI.GAMAPO,GAMAIO.CENTER.
2COSKD,SINKD,COSKU ,SINKU,D,U,FF ,FF2,FF3,FF4&,DFF1 ,DFF2,DFV3,DFF4
REAL MO

C
C SET UP FIXED ASSUNDRY PARAMETE RS'**'*'0000****'*'404*0000"'

DATA J,GYRO,MO/(O.O, I.O),2.BE.06.1760.0/
OPEN(UNITx23,DEVICEz'DSK'.DIALOG)
Ld: x5

C
C

C USER SUPPLIED IPT * 5I5O... 05.*****50000*00

C
C
C CONVERGENCEC 1T R 0 * * ***** .... *

ZERO:1. OE-06
FRACT=1.OE-05
BOUND=-20.*0

C
c FREQUENCY SCANPRAERS' SOs...0000005,

FSTEP :2. OE*06
FSTARTz2 .5E+Og
FSTOP=3 .50E*09
FDIV:1 .00

C
C GEOMETRY P R N T R W 0  * 0 * 0  O 0  0  0  0~

TAL2O3 :250. OE-O6
TYlGz22.5E-06
TIMPzO .40$E-06

C
C MATERIAL PARA NETERS*0990004**#

0 *f*** **0004***oo00000

- , HO=880.0
OHM IN:0 . 5
RATIO:0. 9
FOxHC§GYRO

C

... . . .
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C *.*e~ee..e*0.oe.eeo.~~e~.oe*.e.~~o
C
C
C INITIALIZE FREQUENCY AND GAMMA-GUESS*''O****'**#*** 00"*""'*'"*'*

F=FSTART-FSTEP
AP=O.8T6E+Ol
BPzo.91OE+03
AIxAP
BI saP
GAMMAPzCMPLX (SF,-AP)
GAMMAIsCMPLX(DI ,-AI)
O AMAPOxG0A MMA P
GAMAl OsGAMMAI
PLQTzFDIV-l .0

C
C START FREQUENCYDOL P * ** *~

1 FzF+FSTEP
C
C LINEAR EXTRAPOLATION FOR CLOSER INITIAL GUES S'''''0*6400000

DGAMAP =GAMMAP-GAMAPO
DGAMAIzGAMMAI-GAMAIO
G AM A P 0 GA MMAP
GAMAI02GAMMAI
G AM MA P AM MAP.D GA MA P
GAMMAI=GAMMAI+DGAMAI
AP:-AIMAG (GAMMAP)
BPz REAL(GAMMAP)
Alz-AIMAG(GAMMAI)
Bls REALCOAMMAI)

C
C CALCULATE GILBERT-LOSS AND GAMMA INDEPENDANT PARAMETERS*00*"**

DELHzDHMIMO(FO/F+F/FO )/2.O
CHOsCMPLX (HO, DELH/2.*0)
ETAPzCSQRT((GYROO*2)*MO'CHO/(F'*2-CGYRO*CHO)*2)-l.0)
ETAI:CSQRT(GYRO2)*MOCHORATIO/(F2-(GYROCHO)0'2)-l.0)
XPsETAP*TYIG
Ds (TYIG-TIMP)OETAP
UzTIMPOETAI

C
C INITIALIZE ORBITDAP' Oh e

MORBIT20
CENTER sO.0

C
C GAMMA DO-LOOP FOR UNIMPALNTEDRE ON* '*''" *"*'*

DO 2 12:-1,1000,1
C
C COMPLEX ROOT "RRB DMPRIT-''******'''****'***

NORBITxNORBIT.1
CENTER zCENTER*GAMMAP/50.0
IFCNORBIT.GE.50) GAMMAPzCENTER
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IF(NORBIT.GE.50) CENTERaCENTER/50.0
IF(NORBIT.GE.50) NORBITz1

C
C CALCULATE GAMMA DEPENDENT FUNCTIONS USED IN F-OF-K &DF/D00000

SINHKVx-JOCSIN(JOGAMMAPOTAL2O3)
COSHKV=CCOS(JOGAMMAPOTAL203)
SINKXzCSINCGAMMAP*XP)
COSKX=CCOS (GAMMAPIXP)

C CALCULATE F(K) AND DF/DK FOR NEWTON RAPHSONO§**ttft~ff009
FOFKPuSINKXO((ETAP*2)COSKV-SINHCV)-COSKXOETAP(COSHKVSINHKV)
DFDKPzXPOCOSKX'( (ETAP*42)COSHKV-SINHKV)

i TAL2O3SINKXO((ETAP*2)SINHKV-COSHKV)
*2 +XPOETAPSINKX(COSHKV*SIMHKV)

3 -TAL23ETAPOCOSCXO(COSHKV.SINHKV)
C CALCULATE NEW ALPHA AND BETA BY NEWTON-RAPHSON'O~t~f*fo

* UPsREAL(FOFKP)
VP:AIMAGC FOFKP)
IF(UP*0 2#V?0*2.LE.ZERO) GO TO 5
UX? sRE AL CDFDXP )
UYP*-AIMAG(DFDKP)
DELAP:(VPOUXP.UPOUYP )/(UXP*62.UTPO*2)
DELBP2(YPIUYP-UPOUXP )/(UXP*92.UYPO*2)
AP:AP*DELAP
B? :DP DE LB P
GAMMAPaCMPLX CBP,-AP)
IF(ABS(D9LAP).OT.ABS(AP)*FRACT) GO TO 2
IF(ABS(D9LBP).LE.ABS(BP)*FRACT) GO TO 5

2 CONTINUE
WRITE(LW,31) F,GAMMAP,FOFKP,DFDKP

31 FORM,T1%,TO('*').//,1X,'DID NOT CONVERGE IN DO LOOP 2-CONTINUE:'.
1//.lX.'F'.6X,':',lX,lElO.3,/,lX,'GAMMAP',lX,':',1X,2(1E1O.3,5x),
2/,lX, 'FOFKP',2X,':', 1X,2(lE10.3,SX),/,lX,'DFDKP',2X,':' *1X,
32( lE10. 3,5X) ,/I, X, 70( '*') ,/)
STOP

C
C INITIALIZE ORBIT DME . O IS 00

5 NORBIT:O
CENTER:0O 0

C
C GAMMA DO-LOOP FOR IMPLANTEDS C IO *' * ' '

DO 8 18:1,1000,1
C
C COMPLEX ROOT "ORBIT" APROB0BO0~ OBd~

NORBIT=NORBIT.1
CENTER zCENTER+GAMMAI/5D .0
IF( NORBIT.GE. 50) GAMMAI :CENTER
IF(NORBIT.GE.50 ) CENTERzCENTER/50.O
IFC NORBIT. GE. 50) NORBIT: 1

C
C CALCULATE GAMMA DEPENDENT FUNCTIONS USED IN FCK) AND DF/DK***0 #

4Z
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SINHKV:-JOCSIN(JOGAMMAITAL2O3)
COSHICV CCOS CJOGAMNAI 'TAL2O3)
COSKDzCCOS (GAN!4A1'D)
SINICDzCSINCGAMMAI#D)
COSKUzCCOS(GAMMAIOU)
SINKUzCSIN(GAMMAIOU)

C CALCULATE F(K) AND DF/DK FOR NEWTON RAPHSON"**''**'*'oofo**'00
FFla(ETAPOSINKD-COSKD) 'ETA?
FF22SINHKV'SINKU.ETAI*COSCU'COSHKV
FF3ZETAIO(SINKD.ETAP*COSCD)
FF'~SINHKV'COSKU-ETAI*SINKU*COSHKV
0771 uD*ETAP*(ETAP*COSKD+SINKD)
DFF2zTAL203*(COSHKV*SINKU.ETAICOSKUSINHKV)U(SINHKV§COSKU
I-ETAIOSINKUICOSHKV)
DFF3zETAIOD'C COSKD-E'lAPOSINKD)
DFFIITAL2O3*(COSHKVOCOSKU-ETAIDSINKUOSINHKV)
1-U*(SINHKV*SINICU.ETAIOCOSKUOCOSHKV)
FOFKIsFFlOFF2-FF3*FF4
DFDKIzDFFl FF2.FF1*DFF2-DFF3'FF4-FF3DFF4I

C CALCULATE NEW ALPHA AND NEW BETA BY NEWTON-R APHSON""''ggf *0**
U12REAL (7071I)
VI:AIMAG(FOFKI)
IF(UI*02+Vl**2.LE.ZERO) GO TO 9
UXIxREAL(DFDKI)
UYI s-AIMAG (OFDKI)
DELAI2(VI*UXI+UlOUYI)/(UXI*02#UY1902)
DELBlz(VIOUYIl-UIDUXI)/(UXIG*2+UYI*02)
AlsAI*DELAI
BI:BI+DELBI
GAMMAIzC14PLX(BI ,-AI)
IF(ABS(DELAI).GT.ABS(AI)*FRACT) GO TO 8
IFCABS(DELBI).LE.ABS(BI)OFRACT) G0 TO 9

8 CONTINUE
WRITE(LW,32) F,GAMMAI ,FOFKI ,DFDKI

32 FORMAT(lX#70('''),//,1X,'DID NOT CONVERGE IN DO LOOP 8-CONTINUE:'.
1//, 1, 'F' ,6X ':-',lElO. 3.,, 'GAMMAI',iX,' :' , X,2( 1E1O.3,5X),
2/,1X,'FOFKI',2X,'z'.1X,2(lElO.3,5X),/,1X,'DFDKI',2X,'2',lX,
32C lE10. 3, 5x ) ./,iX, 70(10' ),

STOP
C
C WRITE OUT DATA ON PAPER AND ON A FILE CALLED 'GAM MA'''''4000

9 FREQ:F/1.OE+09
Q2zREAL (GAMMAP)
Q3sAIMAG (GAMMAP)
Q4zREAL(GAMMAI)
QS:AIMAG(GAMMAI)

C WRITE(LW.778) FREQ,Q2,Q3,04.05
C 778 FORMAT(2X, 1F7.4,6X,4( IE1O.3,5X))

X:ARRAY(FREQ,GAMMAI,'OAMMAI,3AMMAP,GAMMAP)
I6F(X.T.BOUND) GO TO 707
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WRITE(23,102) FREQ, X
102 FORMAT(lX,lF6.3,5X,lFl0.3)

IF(F.LT.FSTOP) GO TO 1
707 XYZz20000.O

WRITEC23,708) XYZ
708 FORMAT(1X,1F8.l)

S TO P
END
FUNCTION ARRAYCPRSNTF,GF11,GR11,GF22,GR22)

C------------------------------------------------------- ---------------
C PROGRAM DESCRIPTION:
C
C THIS PROGRAM CALCULATES THE RESPONSE OF A NORMAL INCIDENCE
C MSSW ARRAY OF N IDENTICAL BAR/GAP SECTIONS. THE OUTPUT IS
C INSERTION LOSS IN DB VERSUS FREQUENCY.
C
C-----------------------------------------------------------------------
C

COMPLEX GFi, GR1, GF2, CR2, J, ZFl. ZRI,ZF2, ZR2, TZ,
iTA, TB, TC. TD, ZW, TAUR, Ti, T2, T3, T4, TZR, EIGNDF. EIGNN,
2RHOR, V1, V2, V3. V4, Zl, Z2, Z3, Z4, Z5. Z6, V7, Z8,
4EIGNI, EIGN2, EIGNNi ,GF1 1,GR1 1,GF22,GR22

C
C---------------------------------------------------------------------
C USER DEFINED I-NPUT:
C----------------------------------------------------------------------
C
C OWDTI IS THE BAR WIDTH IN (MICRONS)--------------------------

WIDTH1 :100.0
C
C "WIDTH2" IS THE GAP WIDTH IN (MICRONS)---------------------------

WIDTH2zl 10
C
C ON" IS THE NUMBER OF BAR/GAP SECTIONS----------------------------

Nux46
C
C-----------------------------------------------------------------------
C

PI:3. 1415926
MN:59
IF :0
ROFANGxO *
RORANG:O.O
J=CP4PLX(O.O, 1.0)
UM=P1*4.OE-03

C
C DETERMINE STRUCTURE LENGTH---------------------------------------

GF1 :JOGF1 1/100.0
GR1 :-JOCrR 11/100.0
GF2:J9GF22/ 100.0

4N
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GR2z-JOGR22/100. 0
FsPRSNTF*1000.0
WzZ.0PIOFO .OE*06

C CALCULATE IMPEDANCES-- - - -- -- - - - - -- -- - -- - -
C

ZF1 zJ UM4F/GF1

ZF2sJ6UM*F/GF2
ZR 1:4 UMOF/GR 1
ZR2zJ*UNF/GR2

C
C SET UP TRANSMISSION MATRICES FOR TWO SECTIONS------------------
C

TZxZFI-ZR I
Y1zCEXP(GFl1WIDTH101.OE-0L&)
V2zCEXP(GF2*WIDTH2*1.OE-0O4)
V3uCEXP(GR1*WIDTH101.OE-04)
V4sCEXP(GR2*WIDT41 .OE-0A4)
11 ( ZF 1*V 1-ZR 1 V3 )/TZ

Z2x(ZF1*ZR10(V3-V1))/TZ
Z3z(Vl-V3)/TZ
ZI&(ZFlOV3-ZR1§Vi )/TZ
TZxZF2-ZR2
Z~a(ZF24V2-ZR2V4Z)/TZ
Z62(ZF20ZR20CVM-V2) )/TZ
Z7z(V2-V4 )/TZ
ZS:( ZF29V4-ZR26V2 )/TZ

C CASCADE MATRICES TO OBTAIN ONE ARRAY SECTION--------------------
C

Ti 41 Z5.Z2*Z7
T2zZl Z6*Z2*Z8
T3zZ3*Z5.Z11Z7
TLZ3Z6+Z4*Z8

C
C COMPUTATION OF CIGENVALUES OF MATRIX----------------------------

EIGNlz(TlTCSQRT(T1T)02-~4.(T1T
4 T2T3)))/2.0

EIG2s(T1T-CSQRTT1T24.0(T1OT4T2T3)))/
2 .0

EIGNN2EIGN10*N-EIGN2*4N
EIGNDFzEIGN1-EIGN41

C
C CALCULATION IF EIGENVALUES ARE APPROXIMATELY EQUAL-------------

IF(CABS(EIGNDF).GT.1.OE-06'CABS(EIGN1)) GO TO 5

TA3:MT2)EIN*CN-N1) EIN**N1

TCxN*T3*vIGN1**(N-1)

GO TO 51

IfJ&
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C
C RAISE MATRIX TO NTH POWER-
C

5 TA=(EIGNNI-EIGNN*T4)/EIGNDF
TBz(EIGNNOT2)/EIGNDF
TCz(EIGNNOT3)/EIGNDF
TDx(EIGNNI-EIGNN*Tl)/EIGNDF

C
C INVERT ARRAY AND SPACING MATRICES-----------------------------
C

51 TZR=TA9TD-T3*TC
VI zTD/TZR
V2 a-TS/TZR
V3 a-TC/TZR
V4 =TA/TZR

C
C DETERMINE TRANSMISSION AND REFLECTION COEFFICIENTS-------------
C

ZWzZR2*VI+V2-ZF2(V4+ZR2*V3)
TAUR=(ZR2-ZF2)/ZW
TAURMGsCABS(TAUR)
IF(TAURMG.GT.1.0) TAURMG=1.0
IF(TAURMG.LT.O.1) TAURMG:O.1
ARRAYz2O.O*ALOG1O(TAURMG)
RETURN
END

I

. .**r.. . ...
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C.3 Oblique Incidence MSFVW Array Synthesis

Analysis and synthesis of the oblique incidence MSFVW

arrays was done by three interacting programs that perform

the following functions,

(1) NEWTRY: Calculate the complex dispersion
relation using the Gilbert loss model
and the four layer structure for both
implanted and unimplanted delay line
sections. The form of the resultant
dispersion relation is,

k = -ja

where, a is the loss factor in
Nepers/Meter and B is the wave number
in Radians/Meter.

(2) XDUCER: Calculate the frequency response
contribution due to coupling of the
microstrip transducers assuming a
lossless ferrite (taken directly from Wu
(2. 1)).

(3) DESIGNER: Synthesize the array using Information
from NEWTRY and XDUCER with the impulse
model, and then analyze the design.
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//NEUTRY JOB 8515-KWR,'KIM REED'
/*BOX 854J6
/*TIME 2M
/*LINES 3K

II EXEC FORNCX
* C

C PROGRAM DESCRIPTION:
.C THIS PROGRAM CALCULATES THE LOSSY DISPERSION RELATION FOR
C A FOUR-LAYER FLIPPED CONFIGURATION GEOMETRY (ALUMINA THICKNESS=
C TAL2O3, TOTAL YIC LAYER THICKNESS = TYIG, DEPTH OF IMPLANTED YIC
C LAYER x TIMP, MO(IMPLANTED YIG)/MO(UNIMPLANTED TIC) z RATIO).
C THE DISPERSION IS CALCULATED FOR THE IMPLAN(TED CASE (GAMMAI) AND
C FOR THE UNIMPLANTED CASE (GAMMAP)--BOTH WITH THE SAME TOTAL TIG
C THICKNESS.

C

C DIMENSION COMPLEX AND REAL VARIABLES**
0
*'O*'*

0 1 1
**#'****00000000

6
***

COMPLEX J,ETAI,ETAP,GAMMAI,GAMMAP,CHO,FOFKI,FOFKPDFDKIDFDKP,
ISINHKV,COSHKV,SINKX.COSKXXP,DGAMAP,DGAMAI-,GAMAPO,GAMAIO,CENTER,
2COSKD,SINKD,COSKUSINKU,D,U,FF1,FF2,FF3,FF4,DFF.DFF2,DFF3,DFF4S
REAL MO

C
C SET UP FIXED ASSUNDRY PARAMETERS* 6f*'*f***'''*****'*******'*

DATA J,GYRO,MO/(O.O, 1.O),2.8E+06, 1760.0/
LR :5
LWz6
HEAD=O .0

C

C USER SUPPLIED NUOe
4

ABIO6S@ @IOI @O
4

*I*~

C
C CONVERGENCECRTRNBeOOA@OeUOO* 0

Q4
0

6
0

I66G O

ZERO=1 .OE-06
FRACT=1 .OE-05

C
C FREQUENCY SCAN PARAMETERsI*eOGOO4IOOOOOBOBBSOOOO00400@@OUOOSOIOfe

FSTEP=1. OE+06
FSTART=2 . SE09
FSTOPzi4. OOEi'09
FDIV=1 .00

C
C GEOME-RY PRM~RO~eOOO~49O6O*OOeO~~eOO4*

TAL203z250.OE-06
TYIG=26. DE-06
T:MP:O. 4OE-O6

C
C MA7ERIALPA MEES@ISBOOOOOOO60O*40 30*S

HO:880. 3
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DHM IN:=O .5
RATIOzO.*5
FO:3 .OE.09

C
C *O O O~ O S401........................
C *e...ee......o*e*o~~eo~oo.e.o~oe~e
C *oeeo**...e.~e..o.................

C
C WRITE OUT ALL THE PERTINENT PARAMETERS FOR THIS RUN4944604

Qi :GYRO/1 .06.06
Q22FO/1 .06.09
Q3zTYIG*1.OE.06
QIITIMP0l .OE+06
Q5zTAL2O3*1 .06.06
Q6zFSTART/1 .06.09
Q7zFSTOP/l . E.O9
Q8zFSTEP/1 .OE.06
Q92 CFSTOP-FSTART)/FSTEP-3. O
WRITEC1,777) Q6,07,08.09,HO
WRITE(1,7) RATIO,TYIGTIMP,TkL2O3,DHMIN
WRITE(LW, 102) Qi ,NO,RATIO,DHMIN,Q2,Q3,QJ4,Q5,Q6,
1Q7,HO,Q8

102 FORMAT(lH1,144(v*'),/,1X,'' MSFVW-PURE/IMPLANTED DISPERSION',
1' SOLUTION *',/,1X,10('f'),' FLIPPED CONFIGURATION',1')/IX
244(''').//,1X,'*MATERIAL CONSTANTS:',/,2X.'GYROMAGNETIC RATIO',
35X,'2',41,1F5.2,' MHZ/GE' ,/ 2X, 'UNIMPLANTED MO' ,9X,', ,lF8.2,
41X.'OE',/,2X,'MO(IMP)/MO(PURE)',7X,'s',IIX,1F5.2,///,
51X,''GILSERT-LOSS PARAMETERS:',/.2X,'DELTA-H',
6' MIN',12X,':' ,4X,lF5.2,1X,'OE',/,2X,'FO',21X,':',IX,lF5.2,1X,
7'GHZ',///,lX,'*GEOMETRY PARAMETERS:',/,2X.'YIG THICKNESS',1OX,
8':' ,3X, 1F6.2,1X.'MICRONS',/,2X,'IMPLANT DEPTH',10X,':' ,MX,lF5.2.
91X,'MICRONS' ,/.2X, 'SUBSTRATE THICKNESS' ,MX,'',2X, 1F7.2, IX,
1'MICRONS',///,1X,'OFREQUENCY PARAMETERS:',/,2X,'START FREQUENCY',
28X,'z',IIX,lF5.2,1X.'GHZ' ,/,2X,'STOP FREQUENCT',gX.'S' 4X,lF5.2,
31X,'GHZ',/,2X,'HO',21X,':'#,2X,1F7.2,lX,'OE',/,2X,'FREQUENCY',

5'FREQUENCY',5X,'BETA(UNIMP)',3X,'.ALPHA(UNIMqP)',3X,'BETA(IMPLT)',
63X,
7'-ALPHA(IMPLT)',/t3X,'(GHZ)',7X,'(RAD/METER)',4,'(RAD/METER),&X,
8' CRAD/METER ' ,lX, 'CRAD/METER) ',

C
C INITIALIZE FREQUENCY AND GAMMA-GUESS*0*Of'****f*O**'''U*6'*O'*00

FzFSTART-FSTEP
AP:O. 876E*0O1
BPzO.g 106.03
AI:AP

GAMMAPzCMPLX(C P, -AP)
GAMMA:sCMPLXC 81,-Al)
GAMAPOzGAMMAP
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GAMAIOsGAMMAI
PLOTsFDIV-1 .0

C
C START FREQUENCYDOLO **** ****I.....OO.*@@@6

1 F:F+FSTEP
C
C LINEAR EXTRAPOLATION FOR CLOSER INITIAL GUESS006**49409046*400

DGAMAP=GAMMAP-GAMAPO
DGAMAI=GAMMAI-GAMAIO
O AMA P 0 0A MMAP
GAMAIOzGAMMAI
G AM MA P:GA MMAP. DGA MA P
GAMMAI .GAMMAI+DGAMAI
AP=-AIMAG (GAMMA?)
BP= REAL(GAMMAP)
AIx-AIMAG(GAMMAI)
BIx REAL(GAMMAI)

C
C CALCULATE GILBERT-LOSS AND GAMMA INDEPENDANT PARAMETERS609900046*00*

DELHzDHMINO(FO/F*F/FO )/2.0
CHO=CMPLX (HO, DELH/2.*0)
ETAP:CSQRT((GYRO2)MOCHO/(F*2-(G!ROOCHO)*62)-l.0)
ETAIzCSQRT((GTROI*2)OMOCHORATIO/(FO2-(GROCHO)OO2)-1.O)
XPzETAP4TYIG
Dz (TTIG-TIHP)OETAP
UxTIMPOETAI

C
C INITIALIZE ORBIT DMEObbbbOOOOOO~IeOOOeO~b

NORBITsO
CENTER ..

C
C GAMMA DO-LOOP FOR UNIMPALNTED RGO****'***"''

DO 2 12:1,1000,1
C
C COMPLEX ROOT *ORBIT" APR ************~******

NORBITzNORBIT.1
CENTER sCENTER+.GAMMAP/50 .0
IFCNORBIT.GE.50) GAMMAPzCENTER
IF(NORBIT.GE.50) CENTER=CENTER/50.0
IF(NORBIT.GE.50) NORBIT:1

C
C CALCULATE GAMMA DEPENDENT FUNCTIONS USED IN F-OF-K & DF/DKO0600

SiNHKV2-J*CSIN (3 GAMMAP*TAL2O3)
COSHKV:CCOS(JOGAMMAPOTAL2O3)
SINKX:CSIN(GAMMAPOXP)
COSKX:CCOS (GAMMAPOXP)

C CALCUJLATE FCK) AND DF/DK FOR NEWTON RAPHSON"'*********'*"'*00 0 **
FOFKPzSIKXOC(ETAP2)CSH KV-SINHKV)-COSKXETAP(COSHKVSINHKV)
DFDKP2XPCOSKXO((ETAP02)COSHKV-SIMHKV)

I TAL2030S INKXO(C(ETAP02 ) 9S INHKV-COSHKV)
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2 *XPOETAPOSINKX*(COSHKV*SINHKV)
3 -TAL2O30ETAP*COSKX*(COSHKV.SINHKV)

C CALCULATE NEW ALPHA AND BETA BY NEWTON-RAPHSON'*'*'''00**00**'''***
UP=:R EAL( FOF KP
VP=AIMAG(FOFKP)
IF(UPO*2*VP*42.LE.ZERO) GO TO 5
UXU :R EAL(D F DKP )
UTPa-AIMAG(DFDKP)
DELAPz(VP'UXP..UP*UYP)/(UXP*2.UTP "2)
DELBPz(VP'UYP-UPOUXP)/(UXP"02*UTP"2)
A P AP.DE LA P
BPz:BP .DECLB P
GAMMA PaCMPLX(BP,-AP)
IF(ABS(DELAP).GT.ABS(AP)IFRACT) GO TO 2
IF(ABS(DELBP).LE.ABS(BP)OFRACT) GO TO 5

2 CONTINUE
WRITE(LW.31) F,GAMMAP,FOFKP,DFDKP

31 FORMAT(lX,70(''1),//,1X,'DID NOT CONVERGE IN DO LOOP 2-CONTINUE:',
1//.1X,'F',6X,'x'.1X.1EIO.3,/,1X,'GAMMAP',lX,'u',1X,2(lEl0.3.5x).
2/,1X,'FOFICP'.2X,'z',lX,2(lE1O.3,SX),/,1X,'DFDKP',2X,'u',1X,
32( lElO. 3,5X)./.1 X, 70 ( '0'),/
STOP

C
C INITIALIZE ORBITDAEROOOOeeaeoeeaeO*Seeeem*

5 NORBITsO
CENTERzO.O

C
C GAMMA DO-LOOP FOR IMPLANTEDSE IN"' "''"""''

DO 8 1'8z1,1000,1

C COMPLEX ROOT "ORBIT"DAPR .***B* O60ei.........
NORBIT2NORBIT.1
CENTER=CENTER+GAMMAI/50. 0
IFCNORBIT.GE.50) GAMMAIxCENTER
IF( NORBIT.GE. 50) CENTERzCENTER/50. 0
IF(NORBIT.GE.50) NORBIT:1

C
C CALCULATE GAMMA DEPENDENT FUNCTIONS USED IN F(K) AND OF/DO' 6 ' 0 6 "

SINHKVz-JOCSIN(JOGAMMAIOTAL2O3)
COSHKV:CCOS(JOGAMMAIOTAL2O3)
COSKDzCCOS(GAMMAI '0)
SINKD:CSIN(GAMMAIOD)
COSKU2CCOS(GAMMAIIU)
SINKU=CSINCGAMMAIIU)

C CALCULATE FCK) AND OF/DK FOR NEWTON RAPHSON*""''''"'''"'*#too
FF1: CETAPOSINKD-COSKD) 'ETAP
FF2:SINHKVOSINKU.ETAI 'COSKUOCOSHKV
FF3=ETAIOCSINKD.ETAP*COSKD)
FFL&SINHKVOCOS1U-ETAIOSINKU0COSHKV
DFFi =D*EAP*(ETAPCOSKDSINKD)
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DFF2:TAL2O3*(COSHKVISINICU.ETAIOCOSKUSSINHKV).UO(SINHKVOCOSKU
l-ETAI&SINKUOCOSHKV)
DFF3zETAI*D*(COSKD-ETAP*SINKD-)
DFF'&TAL2O3'(COSHKV'COSKU-ETAI'SINKU'SINHKV)
1-U'(SINHKV'SINKUETAIOCOSKUOCOSHKV)
FOFKIzFF1 FF2-FF3*FFI
DFDKI:DFFl1FF2,FFl DFF2-DFF30FFI&-FF3*DFF4

C CALCULATE NEW ALPHA AND NEW BETA BY NEWTON-RAPHSON**'*'O**'"'0*'*'O
U! :REAL (FOFKI)
VIsAIMAG(FOFCI)
IF(UI00*VI'*2.LE.ZERO) GO TO 9
UXIzREAL(DFDKI)
UYIm-AIf4AG (DFDKl)
DELAI2(VIOUXI.UIOUYI)/(UXIBOZ+UY1Bu2)
DELBIa(VI*UYI-UI*UXI)/(UXI*62.UYI"*2)
AI:AI+DELAI
BI u3I+DELBI
GAMMAIzCMPLX (31.-Al)
IF(ABS(DELAI).GT.ABS(AI)fFRACT) GO TO 8
IF(ABS(DELBI).LE.ABS(BI)GFRACT) GO TO 9

CB CONTINUE
WRITE (LW, 32) F.GAMMAI ,FOFKI ,DFDKI

32 FORMAT(1X,70('''),//,lX,'DID NOT CONVERGE IN DO LOOP 8-CONTINUE:',
I//,lX,'F',6X,'.',lElO.3,/.1X,'GAMf4AI'.lX,'z',lX.2(1E10.3,5X),

32(1E10.3,SX),//,1X,70('§'),//)
V STOP

C
C WRITE OUT DATA ON PAPER AND ON A FILE CALLED 'GAMMA'#ff**fO*#ffff§*'

9 Ql:F/1.OE+09
Q2zREAL (GAMMAP)
Q3zAIMAG(GAM4AP)
QM:'REAL(GAMMAI)
Q5xAIMAG (GAMMAI)
PLOT:PLOT,1 .0
IFCPLOT.EQ.FDIV) WRITE(1 .777) Qi ,Q2,Q3,Q4,.Q5
IF(PLOT.EQ.FDIV) PLOT=O.O

777 FORMAT(IF7.&,'EI5.8)
HEADsHEAD+1 .0
IFCHEAD.EQ.5g.0) WRITE(LW,7)
IF(HEAD.EQ.59.O) HEAD=1.O

779 FORMAT(lX,'FREQUENCY' .5X,'BETA(UNIMP)' .3X.'-ALPHA(UNIMP)' .3X,
1 'BETA(IMPLT) '.3X, '-ALPHA(IMPLT) ' /,3x, '(GHZ)' ,7X, '(RAD/METER)'

a 2L4X, '(RAD/METER ) I X(RAD/METER) ' X' (RAD/P4ETER ) ',
WRITECLW,778) Ql,Q2,03,QLIQ5

7718 FORMAT(2X, 1F7.4,6X,4(lElO.3,5X))
IF(F.LT.FSTOP) GO TO 1
STop
END

//X.FTO1FOO1 DO DSN:B515 .KWR.GAMMA2C,
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IDISPz(OLD,CATLG),UNITzDISKA,
IDCB:CLRECLa67,RECF~sFB,BLKSIZES335O).
/SPACE:(TRK,C10,1O),RLSE)

//X.SYS:M DD

Dill
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//XDUCER JOB B515-KWR,'KIM REED'
/*BOX 8546
/*LINES 2K
/fTIME 2M

/1EXEC FORNCX,LPARM:'SIZE:500K',XREGIONz500K
C
C PROGRAM DESCRIPTION: * * * * * **
C
C THIS PROGRAM IS A COMPOSITE OF HENRY'S DISP. RAD, AND RESP
C PROGRAMS. IT GIVES A STRAIGHT FLIPPED CONFIGURATION MSFVW DELAY
C LINE RESPONSE WITH DIFFERENT INPUT AND OUTPUT TRANSDUCERS AND
C CREATES A FILE "CNVLOS" THAT IS USED IN PROGRAM *DESIGNER" TO
C SYNTHESIZE ION IMPLANTED OBLIQUE INCIDENCE FILTERS.
C
C NOTE: WHEN USECO FOR "DESIGNER" THE VARIABLE
C "PATH" SHOULD BE SET TO ZERO.
C
C UOOO 00 lOU

C
tHARACTER#4 PARA1,PARA2,AMEAN1,AMEAN2,PIEl,PIE2,ACONI1,ACONI2,

1ACONOl ,ACONO2
REAL §8 FQPR OF, OR ,RMX,RMX I TMD,XMX, DO.TO. HI BO ,SO TU,

COMMON FQ(152),PR(152, 1O),QF(305) ,QR(305,10),RMX(152),
1RMX1(152)-,TMD(152),XMXCI52),DO,TOHI,BO,50.TU
COMMON/KIM2/ JCONF,NMAX
COMMON/KIM3/ DELH.PATH.FSTART,DELF
COMMON/CIMI/ NMNM
COMMON/KIM5/ RLGH
DATA PARAl,PARA2,AMEAN1,AMEAN2,PIE1,PIE2/'PARA','LLEL',' MEA',
1'NDER',' P''I f/

C
C

C USER SUPPLIED I P T '

C
C "HI" IS THE BIAS FIELD CE'''''*******'*

HI s892. 857
C
C "TU" IS THE YIG/TRANSDUCER AIR GAP (MET ERS)''9990060

TUs 15.* E-O6
C
C "PATH" IS THE DELAY PATHLENGTH (CM)O44044046440066449400

PATHzO .

C"APATRI" IS THE :NPUT TRANSDUCER APERTURE MEES)044f
C "APATRO" IS THE OUTPUT TRANSDUCER APERTURE (METERS)40***

APA7Rlz3 .CE-03
APATROzIg.3E-03

C
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C "BIN IS THE INPUT TRANSDUCER FIL.IMENT WIDTH (METERS)
C "SO" IS THE OUTPUT TRANSDUCER FILINENT WIDTH (METlERS)**":

BI:-5O.OE-O6
80:-50. OE-06

C "WIN IS SPACING BETWEEN INPUT FILIMENT CENTERS (METERS)**
C "WON IS SPACING BETWEEN OUTPUT FILIMENT CENTERS (METERS)::

WIsi 00. OE-06
WOsl 00.OE-06

C
C "JCONF=" 1-SINGLE BAR, 2-PARALLEL ODD BARS, 3-PARALLEL40
C EVEN BARS, '-MEANDER, 5-PI 0.5 CENTER SPACING,6-PI 1.506
C CENTER SAIG'''* 6 *~~~** *

JCONFI:LI
SCONFOzi

C
C "MMAXI" IS THE STRIPE NUMBER IN THE INPUT TRANSDUCER"
C "NNAXO" IS THE STRIPE NUMBER IN THE OUTPUT TRANSDUCER00*

NMAXIz2
NMAXOz 1

C

C
READ(1,111) FBEGIN,FEND,FSTEP,QNDATHO

* READ( 1,111) FUDGE.DO,TIMPTODELH
111 FORMAT(l1F7.4i, LE 15.8)

ACONIl1 PARA1
ACONI2zPARA2
ACONQI sPARA 1
A CO NO 2 PARA 2
IF(JCONFI.GT. 3) ACONI1:AMEANI
IF(JCONFI.GT.3) ACONI2zAMEAN2
IF(JCONFO.GT. 3) ACONOl zAMEAN1
IF(JCONFO.GT.3) ACONO2zAMEAN2
IFC JCONFI ..GT. L) ACONI11 :PIE 1
IF(JCONFI.GT.LI) ACONI2zPIE2
IF(JCONFO.GT.4L) ACONOlxPIEl
IF(JCONFO.GT.I) ACONO2zPIE2
QIl :TU*1 .OE+06
001 :TUI .OE+06
Q:2zAPATRI01 .OE.03
Q02:APATRO1 .OE.03
Q13xBI6!.0E*06
O3=BOO1. OE+06

QIU=WI1l.OE.06
QOLI:W0 . OE*06

333 FORMAT,/,IX,4IL('),/X,1OC'),' 7RANSDUCER .NFORMA7MDN
101 iC') ,/, IX, LIL C'') ,//,22X, ' NPUT' , OX, 'OUTPUT' *1/, lX,

h'..
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2'TRANSDUCER' .9X,2A'. 8X.2AM,/, IX, 'CONFIGURATION' ,//, 1K
3' NUMBER OF' ,14X,. 13 1 3K, 113./.lX, 'STRIPES' ,//, IX.
4'YIGTRANSDUCER',6X,1F6.l,1OX,1F6.1,/.1X,'AIR GAP ZUM)' ,//,1X,

5 'SIGNAL', 14X, 1F6. 1, lOX, F6. 1,/, X, 'APERTURE (MM)',//, iX,
6'FILIMENT' *IZX, 1F5.l,lOX,1F6.1,/,1X,'WIDTH (tiM)' .11,1K,
7' FILIMENT CTR'.8X, 1F6. 1, lOX, 1F6 *1,/, iX, 'SPACING (tiM)' ,// * X,
8'INPUT-OUTPUT',8X,1F6.1,1OX.'------- ,/,lX,'PATH (CM)' ,//,1X,
94~4 ( 'I'))

QGYR~z2.8
qmoal1760.0
QFOzHGIQGYRG/1 .OE.03

QTYIG:D*1 .OE*06
QTINP:TIMPO .OE+06
QAL2G32TO61.OE*06
WRITE(6, 102) QGYRO,QMOFUDGE,DELH,QFOQTYIG,QTIMP,QAL203tFBEGIN,

1 FEND ,HG ,FSTEP
WRITE(6,333) ACONI1,ACGNI2,ACONG1,ACON02,NMAXI,NMAXGQI1,Q01.
1Q12,QO2,Q13,QO3,QI4,QGL4,PATH

102 FORMAT(1H1,44('*'),/,lX,'* MSFVW-PURE/IMPLANTED DISPERSION'e
1' SOLUTION *',/1X,10('*'),l FLIPPED CONFIGURATION',(')/IX
244('l'),//,1X,'#MATERIAL CGNSTANTS:',/,2K,'GYRGMAGNETIC RATIO',

35Xl'.,X,IFS.2,' MHZ/GE' ,/,2X,'UNIMPLANTED MOt,gX,'x',1X,1F8.2,
41X,'GE',/,2X,'MOCIMP)IMG(PURE)',7X,'s',1 4X,1F5.2,///9
S1X,''GILBERT-LOSS PARAMETERS:',/,2X,'DELTA-H't
6' MIN',?2X,':',4X,lF5.2, TX, OE',/,2X, 'FG',21X,'z',4X,1F5.2.lX,
7'GHZ'o///,IX.'*GEGMETRY PARAMETERS:',/.2X,'YIG THICKXESS',lOX.

8':' ,3X,1F6.2,1K,'MICRGNS' ./,2X,'IMPLANT DEPTH' ,10X.z' ,4X, IF5.2,
91X,'MICRONS' ,/,2X,'SUBSTRATE THICKNESSlUX,'z' ,2X,1F7.2.1X.
1'MICRGNS',///,1K,'6FREQUENCY PARAMETERS:',/,2K,'START FREQUENCY',

28X,'z',J4X,IF5.2,1X,'GHZ' ,/,2X.'STOP FREQUEMCY',gX,'s',4X,1F5.
31X,'GHZ',/,2X,'HO',21X,':',2X.1F7.2.lX,'OE',/,2X,'FREQUENCY'.
4' STEP-SIZE',*4X,'-'.4X.lF5.2.lX,'MHZ' ,//,lXI4C'*') 9/)

CONFI :JCGNFI
CON F02J1CO N F
QMAXI :NMAXI
Q MA XG :NNA KG
FSTART=FBECIN
DELFz(FEND-FBECIN)/200. 0
WRITE(2,222) TU,TU
WRITE(2.222) APATRIAPATRO
WRITE(2,222) 81,B0
WRITEC2,222) WI,WO
WRITE(2,222) CONFI,CONFC
WRITEC2,222) QMAXI,QMAXO

222 FORMA7C2El1.4)
C CALL. HENRYS PROGRAMSO*0eIto........e..4e90eeeeoooOeosesee

SO =2. OW
BO:B8I
RLGH:APA-Rz
JCONF=JCONFI

aw



222

NMAX=NMAXI
NM NM 0
CALL DISP
CALL RAD
CALL RESP
SO=2. 0*WO

RLGH=APATRO
J CO NFsJCON FO
N MA Xz:NM A X
CALL DISP
CALL HAD
CALL RESP
STOP
END
SUBROUTINE DISP

C MSFVW DISPERSION RELATION CALCULATES 152 W-C POINTS AND 305 W-K
C POINTS FOR HILBERT TRANSFORM INTEGRATION
C BOTH GEOMERIES A/B, 10 MODES

DIMENSION FN(1O) ,RR(1O),R(I0) *BL(1O) ,31(lO)
4 REAL*8 DO,TO,T,HI,OMGH,FRQ1,FRQ2,DELF,FRQF,OMGAUI,ET1,BL,B1 ,AL.A

11,DL,D1,EL,E1,TDL,TD1,FDL,FD1,X,EX,TXFX,B,G,C,DF.R.RR,PRR1,V,S,T
,MD,QF,QR,FRQ3,FRQA4,RMX,RMXI,XMX,FQ.3O,SO,TU
REAL*8 DSQRT,DSIN.DCOS.DTANHDABS
COMMON FQC152) ,PR(152, 10) ,QF(305),QR(305,10) ,RMXC 152).

1RMX1( 152) ,TMD( 152) XMX( 152) ,DO ,TO,HI,BO0 ,TU
COMMON/ICIM4/ NMNM
T=TO/DO
OMGHHI/1750.0
FRQ3zOMGH04.9E9
FRQA&:DSQRT(OMGH'(OMGH.1.))'14.9E9
FRQ1 s2.54E9
FRQ2:LI 26E9

C FREQUENCY SAMPLING 305 POINTS FOR HILBERT TRANSFORM
QF( 1) sFRQ3
QF 3 ):FRQ1
QF(2):O.50(FRQ3.FRQ1 )
QF(103)20.50(FRQ2+FRQ1)
QF( 305 )zFRQ4~
QF( 303) :FRQ2
QFC 30u ) 0. 50( FR02*FRQ4)
DF:(QFC103)-QF(3))/100.O
00 100 1:1,99
RI -I

100 F(J)zQF(3)eRI*DF
DO 101 12 1.199
RI=I

101 QF( J)xQF( 103 )+RiDF*0.5



223

C FREQUENCY SAMPLING 152 POINTrS FOR DISPERSION RELATION
FOC I )=FRQ3*O.75*(FRQ1-FRQ3)
FQ(2 ):FRQ1 .0. 5DF
DO 102 I:-1,49
RI :1

102 FO(J )zFO(2).RIODF*2.O
IF(NMNM.EQ.1) GO TO 7777
FQ(52)zQF( 103)*0F0O.25
DO 103 121,99
RI:I
3:52+1

103 FQ(J )aFQ(52)*R!*DF
FOC( 152 ) FRQ24-.250( FR04-FR02)

C WRITE (6,12)
C 12 FORMAT(2X,'N *FREQ ,Ko ,K1 K2 *K3
C 1 K4( ,K5 ,K6 ,K7 ,K8 ,K9')
C DISPERSION RELATION

DO 130 P4:1,152
FxFQ(M)
OMGA*F/4.9E9
U12ONGH/COMGA'OMGA-OMGH*OMGH)-1 .0
ET1:DSQRT(Ul)
BL (1): 1 .OE-9
B1(1 3. 1'1592653
DO 9101 I=1,9

Bl:.1 I+.11925

9101 CONTINuJE
DO 50 Kzl10
AL.EL (K)
A12B1 (K)
DLzAL/ET41
DI xAl /ET1

C REGI FALSI ITERATION TO FIND INITIAL GUESS FOR NEWTON :TERATION
DO 20 lal1000O
ELvETIODL
E I ET1 D 1
TDLzDTANH (7*DL)
TD1=DTANH(T*D1
FDL:DCOS(EL)(1..TDL)-DSIN(EL)'(ET1l-TDL/ETI)
FD1:DCOSE)(1..TD1)-DSINCEl)O(ET1-TD1/ET1)
X=(DL*FD1-D1'FDL)/(FD1-FDL)
EXzET1 X
TXzDTANH (7X)
FXsDCOS(EX)0(1..TX)-DSIN(EX)'(ETI-TX/E71)
!F(DABS(FX)-1.OE-6) 51,51,31

31 CLX:-FX*FDL
C'XFXFD 1
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IFCCUX.GT.O.) D1:X
IF(CL.X.GT.0.) DL=X

20 CONTINUE
C NEWTON ITERATION

51 DO 90 Lz1,500
EX=ET1 OX
TX:DTANH(T*X)
B2T*(1 .00O00O00O-TX**2)
GzETI-TX/ET1

C: (Ul 1..0000000 C(Ul1..0000000 /ET1'OMGH (-1)) 'OMGA
FX:DCOSC(EX) 6( 1.O+TX )-DSIN (EX ) G
DFzDCOS(EX)O(B-ETIG).DSIN(EX)'(B/E71-ET1(.0,TX))
IF(DABS(FX)-1 .OE-9) 92,92,91

91 X2X-FX/DF
go CONTINUE
92 RC(K )X

FM (K ) *FX
RRCK)%R(K)/DO
PR(N, K ) RR (K )

50 CONTINUE
C PHASE VELOCITY, GROUP VELOCITY AND DELAY TND CALCULATION

RlzR(1 )
E~zET 1 Ri
TX:DTANH(TOR1)
B.?' CI. OOO0oOOdO-TXf*2)
G=ET1-TX/ET1

C:(U1.1.0000000)'U11.O000000)/ETOOMGHC1-))ONMGA
V:3ODCS(EX)O(DCOS(EX).DSIN(EX)/ETI )-ET1 '0
Sz(RIOG.DSIN(EX)'DCOS(EX)4(1 .0.TX/U1 ))*C
T4DC N) :3. 24806OE-13 o5/CV*DO)

130 CONTINUE
C HILBERT TRANSFORM W-K POINTS

DO 5130 N:2.304
F:QF( N)
OMGAsF/4.9E9
U1:OMGH/COMGAOOMGA-OMGH'OMGH)-1 .0
ETlxDSQRTCUl)
BL C ): 1. E-9
31(1) :3. 1J41592653
DO 5101 l:1,9

BLCI1)zELCI)*3.141592654
BlC11)z3 1C1)+3141592654

q5101 CONTINUE
DO 550 Kz1,10
AL zBL (K )
Al :31(K)
DL=AL/ET 1
D)l AI /ETl

C REG: FALSI :TEP A7IN TO F:ND :IALGUESS FOR NEW-ON 17ERA7D N

b%
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DO 520 1:1,1000
EL=ETi ODL
El :ET 1 0
TDLzOTANH (T*DL)
TDl:DTANH(T*D1)
FDLzDCOSCEL)*(1..TDL)-DSIN(EL)*(ET1-TDL/E7.1)
FDl:DCOS(El)'(1..TD1)-DSIN(El)*(ET1-TD1/ET1)
Xz(DLOFO1-DlFDL)/(FD-FDL)
EXzETlOX
TXzDTANH(T*X)
FXzDCOSCEX)4(l .TX)-DSIN(EX)'CETl-TX/ET1)
IFCDABS(FX)-1.OE-6) 551,551,531

531 CLXzFXOFDL
* CUXsFX*FD1

IFCCUX.OT.O.) Dl*X
IFCCL.X.GT.O.) DL:X

5'20 CONTINUE
C NEWTON ITERATION

551 DO 590 L=:1,500
EX2ETi 'X
TX:DTANHCTOX)
BzT9(1I.OO0OOOO0-TX42 )
G2ET1-TX/ET1

C:(UI1..O00O0)O(U1..1.00OO0)/(ET10OMGHO(-l))UOMCA
FX=DCOS(EX)*(1.0+TX)-DSIN(EX)*G
DF:DCOS(EX)B(B-ET1OG).DSIN(EX)S(B/E71-ET1O(1.O.TX))
IF(DABSCFX)-1 .OE-9) 592,592,591

591 XzX-FX/DF
590 CONTINUE
592 R (K )=X

FN (K ) zFX
RR (K ):R(K) /D0
QR( MK ) RR(K)

550 CONTINUE
5130 CONTINUE

7L4 FORMAT(1X,5Dl6.9)
71 FORMAT( lX,114, 12El0.3)
79 FORMAT(1X, IIM, lElO.3)

7777 CONTINUE
RETURN
END
SUBROUTINE RAD

C MSFVW RADIATION IMPEDANCE RM AND XM/ RM AS A SUBPRCGRAM, XM
C CALCULATED FROM HILBERT TRANSFORM OF XM BY UJSING 2ND ORDER CLOSED
C FORM SIMPSON RULE FOR lNTEGRAT:ON

DIMENSION QRM(3O5)
REAL§8 FRQ,PR, F,QR,FRQ3,FRQ4,FRQ1 ,FRQ2,DF,XM,RFRQQRMF,ZF,CK.RMX

1, RMX1,ARGUE,H 1,H2 ,H3 ,SUMI, SUM2, SUM,SIMP2, RM, RM1, RN, RND, OMONHI, RML
12, XML2 ,RLOH , FQ, XMX , MD, 00,70, BC,SO, TU
REALOS DLOG,DSQRT

'4A.
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COMMON/KIM/ F,QK( 10) *RM,RM1
COMMON/KIM5/ RLGH
COMMON FQ(152) ,PR(152.1O).QFC3O5),QR(305,1O),RMX(152),

1RMX1C 152) , MD( 152) ,XMX( 152) D,00 T.HI,3O ,SO, TU
714 FORMAT(5D16.9)

OMGH:HI/ 1750.0
FRQ3 :OMGH*4.9E9
FRQ4DSQRT(OMGH'(OMGH.1.))04.9E9
FRQI:2 .54E9
FRQ2=4. 26E9
DFx(FRQ2-FRQ1 )/200.0
QFC1)zFRQ3
QFC 305) :FRQ4
RFRQzFRQ4/FRQ3
QRM( 1 ) 20.
QRM(305 )xO
DO 200 1=2.304
F:QF( I )
DO 201 IK=1,1O

201 QKCIK):QR(I,IK)
CALL PGRM
QRM(I) ):RM
QF(I):QF(I)/FRQ3

200 CONTINUE
DO 400 1=1,152
FzFQCI)
ZFzF/FRQ3

p DO 4491 IK:-1,10
491 OK(IK):PR(IIK)

CALL PGRM
RMX (I) )RM
RMX1 (I)2RM1
ARGUE:CZF.1.)*(RFRQ-ZF)/((ZF-1.)C(RFRQ.ZF))
HlxCQRM(l)-RM)/CQFC1)OQF(1)-ZFZ'F)
H2:(QRM(2)-RM)/(QF(2)*QFC2)-ZFIZF)
H3: CQRM(3 )-RM) /(QFC3 ) QF(3 )-ZFGZF)
SUMl:(FRQ1-FRQ3 )(H 1,4.AH2e.H3)/C6. FRQ3)
Hlz(QRMC3O3)-RM)/CQFC3O3)OQF(303)-ZFOZF)
H2:(QRM(304)-RM)/(QF(304 )QF(304 )-ZFOZF)
H3:(QRM(305)-RM)/CQFC305)BQF(305)-ZFOZF)
SUM2x(FRQ14-FRQ2)*(H..4.H2H3)/(6A*FRQ3)
SUM=SUM 1 SUM2
DO 401 K--',50

Ji 1 JK-i
J2=JK. 1

H2:CQRM(jK)-RM)/(QFJK)*QFCJK)-ZFO:F)
H3:(QPM(JK,'-RM)/(Q(jK)OQF(jK)-ZFOZF)
SIMP2zDF(HI..4.O2H3)/(3.'FPQ3)
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401 SUM=SUM*SIMP2
DO 402 K=51,150

C 2ND ORDER CLOSED FORM OF SIMPSON RULE FOR INTEGRATION
JK=2*(K.1
Ji 1 JK-1
J2=JK,l
H1:CQRM(Jl)-RM)/(QF(J1)OQF(J1)-ZF6ZF)
H2:(QRM(JK)-RM)/(QFCJK)VQF(JK)-ZF'ZF)
H3:(QRM(JK)-RM)/CQF(JK)#QF(JK)-ZF'ZF)
SINP2:DFO(Hl.4.H2.H3)0.5/(3.FRQ3)

402 SUM:SUM.51MP2
XMX(I)=0.318098862'(RMDOLOG(ARGUE).2.'ZFSUM)
XML2:-XMX (I )ORLGHOO.5
RML2zRMXCI )*RLGH*O.5

400 CONTINUE
C84 FORMAT CiX, SD 6.9)
C 73 FORMATC1X,114,6DI4.7)

RETURN
END
SUBROUTI:NE PGRN

C RM SUBPROGRAM TO CALCULATE RADIA7ION RESISTANCE
REAL*8 DO,TO,BO,SO,T,HI,OMGHF,QKOMGA,RNMAX,RN,PN,U1 ,ET1 ,RK,RKDR

1 KS, TKD, RK , BT.*FT. DELT, EXT. A, B,C *D, PC,*P1,P2,*P3, P *PWR, RN1, RM ,X,*DET 1,
IDET2 ,E,G0,RTT, RTU,TT, TU
REALB8 FQ,PR,QF,QR,RMXRMX1 ,TMD,XMX
REALB8 SSECHSECH,DTANH,DSIN,DCOSDSQRT,DABS
DIMENSION PWR(1G)
COMMON/KIM/ F,QKC1O),RM,RM1
COMMON/KIM2/ JCONF,NMAX
COMMON FQ(152),PR(152, 10),QFC305),QRC305,10),RMXC152),

* 1RMX1 C152),TMDC152),XMX(152) ,DO,TO,HI,BO,SO,TU
SSECH CX): 1. -DTANH CX)*DTANH CX)
SECHCX):DSQRTC 1.-DTANH(X)ODTANH(X))
UO=1 .256637E-06
TT=TO +TU

C CONDITION JUMP ON TRANSDUCER CONFIGURATIONS '1 FOR SINGLE BAR, 2
C FOR PARALLEL ODD BARS, 3 FOR PARALLEL EVEN BARS, 4 FOR MEANDER
C STRIPS, 5 FOR P: 0.5 CENTER SPACING, 6 FOR PI 1.5 CENTER SPACING)
C NMAX IS THE STRIP NUMBER FOR MSW TRANSDUCERS

RN N.M A X
ND -N MAX/ 2
RND:ND
OMGHzHI/175C .0
OMGA=F/4.9E9
U1:OMGH/(OMGAOCMGA-CMCHOMGI)-'.0
ET:!DSQRT(Ul)
DO 1OO I11 0
RK=0K ( 1)
RKD=RK*00
TKD=TOORK
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RK1 =E7i RKD
RKS:-RK *S0
RTT=TTORK
RTU zTUIRK
BT:DSIN(o.5*RKOBO)/CO.59RK*BO)

C CONDITION JUMP ON TRANSDUCER CONFIGURATIONS C1 FOR SINGLE BAR, 2
C FOR PARALLEL ODD BARS, 3 FOR PARALLEL EVEN BARS, 4 FOR MEANDER
C STRIPS, 5 FOR PI 0.5 CENTER SPACING, 6 FOR PI 1.5 CENTER SPACING)
C NMAX IS THE STRIP NUMBER FOR MSW TRANSDUCERS

GO TO (91 92,.93,94 95,96 ),JCONF
91 FTzl1.

GO TO 99
92 FTzl.

DO 920 N=1,ND
PN=N

920 FT=FT*2.*DCOS(PNORKS)
GO TO 99

93 F~zO.

DO 930 N:1,ND
Plf=N

930 FTxFT+.ADCOSC(PN-O.5)*RKS)
GO TO 99

94 FTzO.
DO 940 N=1,ND
pmuN

940 FT:FT.A((-1 .)N*)DSII((PI-O.5)'O.5'RKS)
GO TO 99

95 FTxO.
DO 950 Nz1,ND
PN:N

950 FTzFT.2.*DSIN((PN-O.75)*RKS)
GO TO 99

96 FT:O.
DO 960 Nz1,ND
PNzN

960 FTzFT.2 .*DSIN(CCPH-O .25) 'RKS)
99 DET1:ETI1DO'CU1-DTANHCRTT))/DCOS(RK1)-TTSSECH(RT)(DSIN(RI)eET1

1*DCOS(RK1))
DE-12xDSIN(RK1 )O(Ul-DTANH(RTT))-ETlODCOS(RK1 )*CDTANH(RTT)+I..)
DELTz(TOOSSECHCTKD)ODTANH(RTU).TUOSSECH(RTU)ODTANH(TKD))ODET2.(1.*
lDTANH(TKD)*DTANH(RTU))ODETl
EXT:BTOFT/ CDELTORK)
A:CDSIN(RK1 )'(U1-DTANH(RTU))-ET1ODCOSCRK1Y'(DTANHCRTU),.1.))E7XT
B:-DTANHCTKD)O(ETI'*DSIN(RK1)-DCOSCRI1))ErXTOSECH(RTU)
C=DTANH(7KD)*(ETl*DCOS(RK1).DSIN(RK1 ))'EXT'SECH(RTU)
DsET10DTANH (TKD)6EXT4SECH( RTU)
E:-DTANH(TKD)O(ETlSDSIN(RK1 )-DCOS(RK1 ))OX'7*ET1
GsDTANH(CTKD)C(ET1IDCOS(RK1).DSIN(RKI))*EXT
PC=6.283185307*UOOF*RC
P1=0.5*A'A*(DTANH(TKD),'RK-T0*SSECHC(KD))



229

P2:-U1(0.5*D0'CBB*C'C).0.250(BB-COC)DSIN(2.RK)/ETRC).o.5@B

P30 .5§D*D/RK
P40.5TU(EE-G*G)*SSECH(RTU).O.5"(EOE.GOG)ODTANH(RTU)/RKEGDTA
1 NH(RTU) *DTANH(CRTU ) RK
P:-PC(Pl*P2P3P4

100 PWR(I):P
RMlz2.*PUR(l)
RN: RN1
DO 101 122,10

101 RMaRM+2.*PWR(I)
RETURN
END
SUBROUTINE RESP

C MSFVW FREQUENCY RESPONSE PROGRAM TO CALCULATE TRANSMISSION
C LINE PARAMETERS, CIRCUIT ELEMENTS, INPUT IMPEDANCE, AND INSERTION
C LOSS

REAL LOSS,LOSS1,LOSS2
DIMENSION WV(152),ZILC152),LOSS(51),FREQ(51),WAVE(51)
REAL§8 FQ,TMD,RMX,XMX,RMX1 ,F.TM1 ,RM,XM,RM1 ,EK,RLGH,PXIN,ZC,BETA,AC

1 ,RML2,XML2,ARARI,ARI.CZC,CBT,CAC,CAR,CXM,ALPH,AL,BL,RIN,XIN,RI1 ,R
11C,XMIN,PT1,CL1,XL1,COMX,RN,RND,X,CST,QF,QRPR,BO,DO,TO,
lHI ,SO,TU
REAL*8 SECH,DTANH, DSIN,DCOS, DSQRT,DEXP,DLOGIO
COMMORIKIN21 JCONF, HMAX
COMMON/KIM3/ DELHPATH,FSTART,DELF
COMMON/KIM4I/ NMNM
COMMON/KIM5/ RLGH
COMMON FQ(152),PR(152,1O),QF(305),QR(305,10),RMX(152),

1RMX1( 152) ,TMD( 152) ,XMXC 152) ,DOTOHI,BOS0,TU
SECH(X)xDSQRTC1 .-DTANH(X)ODTANH(X))
EKz6. 0516
PXINZO .0

C CONDITION JUMP ON TRANSDUCER CONFIGURATIONS C 1 FOR SINGLE BAR, 2
C FOR PARALLEL ODD BARS, 3 FOR PARALLEL EVEN BARS, '4 FOR MEANDER
C STRIPS, 5 FOR PI 0.5 CENTER SPACING, 6 FOR PI 1.5 CENTER SPACING)
C KMAX IS THE STRIP NUMBER FOR MSW TRANSDUCERS

RNxNMAX
ND: NMAX/2
RNDzND
CST:1.
DO 105 J=1,152
F2FQ(J)
TM12TMDCj)
RMzRMX (J )
XM:-XMX(J )
RM1 :RMX1CJ)
ZC=gO. o
BETiAx3 .636102608D-84F
AC=7. 960-7*DSQRT( F) /(BO9ZC)

%I-v
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RML2zRM*RLGH'O .5
XML2zXM*RLGH '0.5
AR:-O.SORM/ZC
AR 1zO.50RM1 /ZC
ARI :0.5 XM/ZC

C CONDITION JUMP ON TRANSDUCER CONFIGURATIONS ( 1 FOR SINGLE BAR, 2
C FOR PARALLEL ODD BARS, 3 FOR PARALLEL EVEN BARS, '4 FOR MEANDER

STRIPS, 5 FOR PI 0.5 CENTER SPACING, 6 FOR PI 1.5 CENTER SPACING)
C NMAX IS THE STRIP NUMBER FOR MSW TRANSDUCERS

GO TO (91,92,92,93,94,94),JCONF
91 CZC:1 .

CBTa. 
CACxl
CARsl
CXMs1
GO TO 99

92 CZCz1./RN
CBTx1.
CACzl
CARz: /RN
CXM21 ./RN
GO TO 99

93 CZCs1.
C ST R N
C ACsRN
CARzl ./RN
CXM:1 ./RN
GO TO 99

9'4 CZC:1./RND
CBT=2.
CACz2.
CAR. 1 ./RN
CXMz1 ./RN

C TRANSMISSION LIME PARAMETER MODIFICATIONS FOR TRANSDUCER ARRAYS
99 ZC:CZCoZC

BETA:CBTOBETA
AC: CA C'AC
ARaCAR*AR
ARi :CAR*AR 1
ARI :ARI 'CXM
ALPHzAR+AC
BETA:BETA*ARI
ALz2.IALPHORLGH
BLz2 . BETA*RLGH

C INPUT IMPEDANCE AND CIRCUIT ELEMENTS
RINxZ'DTANH(AL)/(1..DCOS(BL)SECI(AL))
XlNzZC*DSIN(BL)OSECH(AL)/1.DCOSBL)SECH(AL)).PXIN
QRIN=RIN/50.
qx:N=x:N/50.
RI I RIN*AR1 /ALPH
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RITxRIN*Af/ALPH
RICxRIN*AC/ALPH
XMIN*XINOARI/BETA

C POWER RATIO. CONVERSION LOSS AND INSERTION LOSS
PTla200.00 RI1/C(RIN+50.0)602.+XIN**2)
CL~s1O.6DLOGIO(PTl)

M C
C THE THREE TERMS IN THE FOLLOWING LIME ARE CONVERSION LOSS
C PROPAGATION LOSS, AND BIDIRECTIONAL RADIATION LOSS 00o0#0

679 XLl sCLI.(-76.4E.6'TM1'DELH'PATH.1O. 'DLOGIO(O.25D.OO) )/2.C
COMXaPIIN
IF(NMKN.EQ.O) ZIL(J )2O.O
ZIL(J)z-XL1#ZIL(J)
IF(NNNN.EQ.O).GO TO 105

* FQ(J)aF/1 .E9
WV(J)a(2.03.14159/PR(J.1))*1.OE.O6

105 CONTINUE
IF(NMNN.EQ.O) GO TO 777
LOSSi :0.0

WAVElxO *

JSTDPx5
FREQI UFSTART
D0555 M21,50,1

FR EQ( N)xaFREQi
LOSS(M)zLOSS I
WAVE(M)xWAVEI

D0666 Jzl,JSTOP,l
4 FRE012FREQ1.DELF

D0333 122,152.1
* IF(FQ(I).GT.FREQ1) GO TO 444

333 CONTINUE

LOSS2slD.Of9(-LOSS1/10.0)
WA VE is WV(I)-WV l-1) )'( FREQI-FQ( I-1) )/(FQ CI)-FQ( I-1) ) WV(I-1)
WAVE2zWAVE1 l.OE-06
IFCMM.EQ.O) FREQ( 1 )FREQ1
IFCNN.EQ.0) LOSS(1 )*LDSSl
IF(NN.EQ.O) WAVE(l)zWAVEI
IF(NN.EQ.O) MM:1
WRITE(2,111) WAVE2,LOSS2

C WRITE(LW,111) WAVE2.LOSS2
Ill FORMATC2E11.'4)
666 CONTINUEI JSTOP:4
555 CONT:NUE

CALL GRFPL7(LOSS.FREQ.WAVE,M)
777 NMNMzI

1 FORMATC4F8.15)
3 FORMATCISX, 'RIN,XINRII,RIC,XMIN',7l44
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'4 FORMAT(1X,'JFQ,XLI,CLI,COMX' ,IJ,L&E1I.L)
42 FORMAT(5D16.g)
88 FORMATC1X,'RM1 ,RM,XM,RML2,XMLZ' ,5E1'4.6)

RETURN
END
SUBROUTINE GRFPLT(ZINLOS,FREQ.WAVL,L)
DIMENSION FREQ(L).ZINLOS(L),WAVL(L)
CHARACTERJ4 IFMqT(6), IFF(60)
DATA IFMTC1),IFMTC2),IFMTC3),IFMT(5),IFMT(6),IFF(1 ),IFFC2),IFF(3),

AIFF(4) ,IFF(5) ,IFF(6),IFF(7) ,IFF(8) ,IFF(9) .IFF( 10),IFF( 11) ,IFFC 12),
8IFF(13).IFF(11I),IFF(15),IFF(16),IFF(17).IFF(18),IFF(19),IFF(2O),IF
CF(21).IFF(22).IFF(23).IFF(24),IFF(25),IFF(26).IFF(27).IFF(28),IFF(
D29),IFFC3O),IFF(31),IFF(32),IFF(33),IFF(34),IFF(35),IFF(36),IFF(37

FIFFC 46 ), IFF(147) .IFF( 48),IFF('49) ,IFF(50) ,IFF(51) ,IFF(52) ,IFF(53) ,IF
GF(5')IFF(55),IFF(56),IFF(57),IFF(58),IFF(59),IFF(60)/'(''.''',

I, ',5X', ,06X, ',0X', ,0X', ',09X', ',0X', 1,4X',

J , 12X'. '.,13X ' , 114X'. ' l x , 5 .,',16X ', 1,17X ', ' l x''
K',19X', ',20X', 1,21X', 1,22X', ',23X', ',214XI, ',25X'. 1,26X'
L,. ',27X', 1,28X', ',29X'. ',30x'. ',31x', ',32X'l ',33X',
M ',34X', ',35X't ',36X'. ',37X'. ',38X', ',39X', ','40X',
N'.141X', ',42X', 1,43X'. '.44X1, 1,45X', ',46X', 1.47X1, 0,48X'
0. 0 149x', ',50X' ',51X', 1,52X', ',53X', '.54IX', 1,55Xt,
P ',56X', ',57X', ',58X', 1,59X', ',60X'/
WRITE(6, 100)

100 FORMAT(1H1,30X,'FREQUENCY AND WAVELENGTH VERSUS LOSS'/32X
1,'(GHZ)' ,8X,'(MICRONS)' ,gx,'(DD)'//12X
I .'60',8X,'50',8X,'4O' ,8X,'30',8X,'20',8X,'10'.gX,'0'/1 lX/)

1 DO 1000 Izl,L
ZILzZ INLOS (I)
DIFz(FLOATCIJ4 ) )/5..-FLOAT( CIJ4 )/5)
IF(DIF.GT.0) GO TO 2
WRITE(6, 101) FREQ(I)tWAVL(I),ZINLOS(I)

101 FORMAT( 1H.,lX,F7.4,2X,'I-I' ,6(9( '-') ,'I') ,F8.1,Fl2.4)
2 WRITE(6,102) FREQ(I),WAVL(I),ZINLOS(I)

102 FORMAT(lH.,lX,7F7.'4,65X,F8.1,F12.4)
PL0T=60 .0
IF(ZIL.GT.(PLOT.O.5)) GO TO 5
IF(ZIL.LT.0.0) Go TO 6
Nzl

3 IF(ZIL.GE.(PLOT-0.5).AND.ZIL.LT.(PLOT*0.5)) GO TO '

PLOTzPLOT-1 .00000
N:N*1
:F(N.GE.61) N260
IF(PLOT.LT.O.0) GO TO 6
G0 TO 3

'4 IFMT(4):IFFCN)
WRITEC , :FMT)
GO TO 1000
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5 WRITE(6,103)
103 FORMAT( 1H+, OX, 'IG'/)

GO TO 1000
6 WRITE(6,104)

104 FORMATC IH..lOX, 'I' 6oX, '12/)
1000 CONTINUE

RETURN
END

//X.FT0lFOOl DD DISP=SHR,DSN:8515 .KWR.GAMMA20
//X.FTOZFOOl DO DSNaB515.KWR.CNVLOS,

II DISPz(OLD,CATL.0),UNITzDISKA.
// DCI: (LRECLz22,RECFMzFB,BLCSIZEs2200),
// SPACEz(TRK,(1O,10).RLSE)

//X.SYSIN DD

N.. , "
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//DESIGNER JOB B515-KWR,'KIM REED'
/*BOX 8546
/*LINES 2K
/*REGION 256K
// EXEC FORNCXINDXz'ASOO.LPPLOT',LPARMz'SIZEz5OOK'.XREGIONz5OOK
C
C PROGRAM DESCRIPTION:
C
C THIS PROGRAM DESIGNS AND ANALYZES OBLIQUE INCIDENCE ION.
C IMPLANTED MAGNETOSTATIC FILTER ARRAYS USING:
C
C (1) DISPERSION DATA FROM PROGRAM "NEWTRY"
C
C (2) TRANSDUCER RESPONSE DATA FROM PROGRAM "XDUCER"
C
C
C NOTE: BE SURE TO RUN PROGRAMS "NEWTRY" AND wXDUCER"
C WITH THE DESIRED PARAMETERS BEFORE RUNNING THIS
C ONE. ALSO, BE SURE THAT THE FILES CREATED BY
C NEWTRT ANO XDUCER ARE THE SAME AS THOSE NAMED
C AT THE END OF THIS PROGRAM.
C
C *eOOOOOOOOOOeO6OA66IOeO e3OOOeOO*OOOO
C

DIMENSION SGAMAP(2000),SGAMAI(2000),SFREQ(2000),IL(1,600),
ITGROUP(1,6OO),ST(500),SW(500),SL(500),PHASE(1,600),SF(500)
2,TXLOSS(202),WAVELN(202)

C
CHARACTER64 PARA1,PARA2,AMEAN1,AMEAN2,PIE1,PIE2,
1ACONIIACONI2,ACONO1,ACONO2
REAL ILL,ILO
COMPLEX GAMMAP,GAMMAISGAMAPSGAMAI,R,RHO,J

C
DATA J,PI/(O.O,1.O),3.1415926/
DATA PARA1,PARA2,AMEAN1,AMEAN2,PIE1,PIE2/'PARA','LLEL',v MEA',

1'NDER', P','I 'I/

C

C USER SUPPLIED INPUTIe e  IOOO*e e  fIOS e e
**O *O*O*OU e *S e ei e160000 e04

C
C "YNOT" IS THE DISTANCE FROM THE CENTER OF THE INPUT TRANSDUCER TO

SC THE LEADING EDGE OF THE FIRST ARRAY BAR (METERS). IT SHOULD BE
C ATLEAST 1.5MM SO THAT THE FIRST BAR DOESN'T OVERLAP THE INPUT
C TRANSDUCER. O**o********o*oem**o**o*O*l O**O*e

YNOTz2 .OE-03

C "ZO" IS THE DISTANCE FROM THE ARRAY AXIS TO OUTPUT XDUCER (METERS)
ZOz2.0E-03

C

%
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ZO=2. OE-03
C
C "CC" IS THE SLOPE OF THE L'INEAR GROUP DELAY (SEC/HZ)'l vfv4§ll ***

CO:-0.6E-15
C
C "BAND" IS DESIRED (LOWER IF CD>O:UPPER IF CO<O) BANDEDGE (GHZ)'"'4

BAND:3.5
C
C "ARAYLN" IS THE TOTAL ALLOWED LENGTH INCLUDING THE 1.5MM DUE TO"'f
C BAR SLANT AND THE FREE PROPAGATION DISTANCE 'YNOT' (MILLIMETERS)"'

ARAYLN*19.0
C

C "RATIO* IS THE MAXIM'JM ALLOWED RATIO OF THE LONGEST BAR LENGTH TO
C THE MINIMUM BAR LENGTHOe * °

RAT70:10.0
C
C IF "NOWAIT" IS SET TO 1 THE WEIGHTING FUNCTION WILL BE IGNORED O O'
C IF "NOWAIT" IS SET TO 0 THE WEIGHTING FUNCTION WILL BE USED******#
C

NOWAIT:I
C
C "PLTJMP" IS THE PLOT INTERVAL TO BE USED"""'e e e  """ e '"' e e

PLTJMP:O.005
C
C ****le**.*****O**OO*****OOO*****OlO*6*U****eiiee.**6*O**IOB..e

C
C *************l*ell ********oliei*olllll elloeI....e..e......'ell
C

C INITIALIZE CONSTANTS o
GRIDz-60.0
TGRID300 .O
LW:6
WO:.O 0
YOO.O
DY*O.0
NN:I
N:1000
SKIP:0.5
MsO
SMIN=1.OE+08
SMAX:O.0
HEAD=O.0
FA:3.OE+09
TO:-Co(BANDe1.OE+09-FA)

4 KPLOT=O
JI:1
NXDAT:200-6
:F(C0.LT.0.O) JI:NXDAT-1

C
C READ PARAMETERS FROM PROGRAM W

'% %
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REAO(1,111 ) FBEGIN,FEND,DELF,QNDAT,HO
NDAT=QNDAT
READ(1,111) FUDGE.TYIG,TIMP,TAL2O3,DHMIN

C READ PARAMETERS FROM PROGRAM "XDUCER'''*''*'''''*'''***'''*''*'*
READ(2,333) T!J,PATH
READC2,333) APATRI,APATRO
READ(2,333) B1,B0
READ(2,333) WI,WO
READ(2,333) CONFICONFO
READ(2,333) gMAXI,QMAXO

C
C WRITE OUTr ALL PERTINENT PARAMETERS FOR THIS DESIGN94#**'*0*0000*

QI 1 TU*1. OE+06
QO1=TU*1 .OE*06
012zAPATRI*1.OE*03
Q02zAPATRO*1.OE.03
Q1338I*1.OE+06
Q03zBO41 .O.E06
014zWI01.OE.06
Q4zWNOl .3E+06
NMAXI :QMAXI
NMAXO:QMAXO
QGYROz2.8
QMO=1760 .0
QFO=HOOQGYRO/1.OE+03
QTYIG:TTIG*1.OE+06
QTIMPzTIMP*1.OE*06

4' QAL203zTAL203*1.OE+06
ACONIl1 PARA 1
ACON12zPARA2
ACONO I PARAl

* ACONO2zPARA2
IF(CONFI.GT.3) ACONIlzAMEAN1
IFCCONFI.GT.3) ACONI2zAMEAN2
IF(CONFO.OT.3) ACONOlzAMEAN1
IF(CONFO.GT.3) ACONO2xAMEAN2
IF(CONFI.GT. 4) ACONIlzPIEl
IF(CONFI.GT.8) ACONI2=PIE2
IF(CONFO.OT. 4) ACONOlzPIEl
IF(CONFO.GT.4) ACONO2mPIE2
WRITE(6, 102) QGYRO,QMO,FUDGEDHMIN,QFO,QTYIGQTIMPQAL2O3,FBEGIN,

1 FEND ,HO , ELF
DEL.F--DELF/1 .OE*03
WR:TE(6,313) ACONII,ACON12,ACONO1,ACDNO2,NMAXI.NMAXO,Q11 ,Q01.

1Q12.QO02,Q13.003 ,QI 4 ,QO04, PATH
102 FORMATC1Hl,441C''),/,1X,v§ MSFVW-PURE/IMPLANTED DISPERSION',

1- SOLUTION *'/ X~(' 'FLIPPED CONFIGURA71CN '1 '' / X
244('O'),//,--X.'fMATERIAL CONSTANTS:',/,2X,'GYROMAGNE-,C RAT:0',

35X,'-' ,4X,1F5.2,' MHZ/OE' ,/,2X, 'UNIMPLANTED M0O,9X.'', X.lF8.2,
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4IX,'OE',/*2X,'hqO(1MP)/MO(PURE)',7X*':'.4X,lF5.2,///,
51X,'GGI%.ERT-LOSS PARAMETERS:',/,2X,'DELTA-H',
6' 4lN' * 2X,'*'.*4X,IFS.2,lX,'OE' ,/.2X.IFOI',21X,':z ,4X,lF5.2. IX.
7'GHZ',///,1X,'&-EOMETRY PARAMETERS:'./,2X,'YIG THICKNESS',1CX,

91X,'MICIRONS' .',2X,'SUBSTRATE THICKNESS'.4X,':-',2X,lF7.2,1X,
1'4CRONS',///,1X.'OFREQUENCY PARAMETERS:',/,2X,'ST&ART FREQUENCY'.
28X.'a',4X.1FS.2,lX, 'GHZ' ,2X.'STOP FREQUENCY',gX,'it',4X,1F5.2,
31x,'GHZ'./,2X,'HO',21X,':-',2X,1F7.2,lX,'OE',/.2X,'FREQUENCY'l,
4' STEP-SIZE'.4X,'z',4X.1F5.2, 1X,'MHZ',//,lX,44J(''')./)

313 FORMATC//,IX,44(''')./,IX,1O('O'),' TRANSDUCER INFORMATION'
% 11O('*')./,1X.lI4('').//,22X,'INPUT',1OX,'OUTPUT'.//,1X,

2'TRANSDUCER' .9X,2A4,8X,2AJI,/,1X,'CONFIGURATION' ,//.1X,
3'NUMBER OF' ,14X.113, 131, 113./,1X,'STRIPES' .1/111,
4'YIG/TRANSDUCER' ,6X,lF6.1,1OX,1F6.1,/,lX,'AIR GAP (UN)' *//*1X,
5'SIGNAL' ,116X, F6. 1,IOX,1F6.1 ,/,lX,'APERTURE (MM)' ,//,1X,
6 'F:LIMENT',*1ZX, 1F6. 1, OX, 1F6. 1,/, 1, 'WIDTH (UM) '.1/, lX,
7'FIL:MENT CTR' ,8X,lF6. 1, IOX,1F6.l,/. 1X,'SPACING (UM)' *//, Ix,
8'INPUT-OUTPUT' *8X, 1F6.I,lOX,'-------' ,/,1X,'PATH (CM)' ,//,1X,
94410')/

C READ DATA FROM NEWTRY *O******0***********

DO 2 INDEXz1,NDAT,l
READ(1,I111) FI.GAMMAP.GAMMAI
SFREQ( INDEX )zFl
SGAMAP( INDEX)zGAMMAP

SGAMAI(INDEX)xGAMMAI

C
C READ DATA FROM XDUCER II10.,..E..@05SO*00U0

DO 5 INDEXzl,NXDAT,l
READ(2,333 ) WAVELN(INDEX) ,TXLOSS(INDEX)

333 FORMAT(2E11.4)
5CONTINUE

CSET UP SYNTHESIS DATA SWEEP-DIRECTION, BASED ON SIGN OF CO (BARS
C NEAREST INPUT MUST BE DESIGNEDFRS)

INDEX: 1
IF(CO.L..0) INDEXzNDAT
Fl :SFREQCINDEX )ol.OE+09
SAMMAP:SGAMAP C NDEX)
FzFl
BETA 1 REAL(GAMNAP)
W=PI/BETAI

* :STOPzNDA7-1

SYNTHESIS DATA SEPOAO@O616010u04
1  

*******

FCC :-,S-O~
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DYo=DY

FO=F 1
BETAO=BETA 1
INDEX :1.
!FCCO.LT.O.O) INDEX=NDAT-I

C
C ESTABL:SH A VALUE OF K AND F ******* ** *6B

F1:SFREQ(INDEX)01.OE+og
GAMMAPzSGAMAP( INDEX)
BETAl1 REAL(GAMMAP)
F:(FO.F1 )/2.O

C
C CALCULATE REQUIRED BAR OR GAP WIDTH RELATIVE TO THE LAST CUT TOO*
C SATISFY
C T=(DK/DW)CZO.Y(I))zCOOFTO
C
C AND ... Y(I):Y(I-1)+(W(I-1)/2
C

DYz(CO*(F-FA).TO)92.OPI(F1-FO)/ (BETAl-BETAC) - CZO*YO..WO/2.O)
C
C CALCULATE BAR OR GAP WIDTH THAT WILL COUPLE TO K BEING CONSIDERED'

W=2.O'P!/(BETAO*BETAl)
C
C DY MUST EQUAL W/2, SO KEEP MOVING THRU THE KCF) DATA UNTIL DY GOES
C FROM LESS THAN W/2 TO GREATER THAN W/2. THEN USE LINEAR INTERPOLA-
C TION TO CALCULATE WHERE DYzW/2.

IF(DY.LT.CW/2.O)) GO TO 1
W 1 W
WzWOO (DY-DYO )/( Wi-WOO )-DYC )/((CDY-DYD )/ W 1-WOO).S

DY :W/2 .0
Y=DY.YO..WO/2. 0
F!C F-FOO )O( -WOO )/(Wl -WOO )+~FO

C
C START THE ARRAY WHEN THE FIRST CUT POSIT:ON BECOMES POSITIVE 004000

QCUTzY-W/2. C
IF(QCUT.LT.YNOT) GO TO 1000

C STO0P THE ARRAY WHEN IT EXCEEDS ARAYLN '~

IFCCY.W/2.O).GT.((ARAYLN-1.S)*l.OE-03) .AND.SKIP.LT. 1.0) P4:1

C F:-ND TRANSDUCER LOSS AT WAVELENGTH=2W
UDE!W1:WAVELN(JI)-W92.0

0ELW2=W*2.0-WAVELN(JI,1)

IF(DELW2.LT. 0.0) JI :JI.1
!FCDELW1#DELW2.LT.O.O) GO TO ~
TXL:TXLOSS(Ji)-DELW1*(TXLCSSJIl)-TXLOS5CjlI.')/DELW1.DELW2)
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C FIND PROPAGATION LCSS AT WAVE LENGTH:2W''f'***ooe0#000
PROPL:EXPC2.O'AIMAG(GAMMAP)CYZO))

C
C SPECIFY THE DESIRED AMPLITUDE WEIGHTING FUNCTION *'O'****

WEIGHT% 1. 0
C
C SCALE BAR LENGTH TO COMPENSATE FOR TRANSDUCER AND PROPAGATION LOSS

SCALE=WEIGHT/CTXIPROPL)
IFCNOWAIT.EQ.l) SCALE=1.O
IFCSCALE.GT.SMAX.AND.M.EQ.O.AND.SKIP.LT. 1.0) SMAXzSCALE
IF(SCALE.LT.SMIN.AND.M.EQ.O.AND.SKIP.LT. 1.0) SMINzSCALE
IF(M.EQ.O) NzNN

C
C LOAD ANALYSIS ARRAYS WITH BAR CENTERS, WIDTHS, AND LENGTHS"""

SKIP:1.O/SKIP
IFCSKIP.L7.1.O) NN=NN.1
SY ( N )m:y
SW( NN ) W
SL CNN) :SCALE

.1~ SFCNN)=F
IF(SMAX/SMIN.GT.RATIO) M:1

C
C UPDATE FREQUENCY, BAR POSITION, AND BAR WIDTH AND MOVE ON TO THE
C NEXT BAR ***5.OO..e..O..@,i.@..,@@O61

1000 YOZY
WO:?. ODY
F=Fl

DY=O.O
1CONTINUE

C
C DESIGN COMPLETE, WRITE OUT APPROXIMATE TGBW PROD UCT''0"6444

TBW:ABS(C04(SF(N)-SFC1))002)
WRITE(LW,323) TBW

323 FORMAT(lX,'APPROXIMATE TIMEOBANDWIDTH =',lF8.2.//
1,i3X.'BAR',8X,'BAR'.5X,'1/2BAR',5X,'CUT10'.5X.'CUT2*',SX,'BAR',/
2,3X,'FREQ'.5X.'CENTER',5X,'WIDTH',4X,'LENGTH',5X,2('0.7'',6X),/
3, 3X, '(0HZ) ' ,5X ,5('(MM)', 6X ) ,

C WRITE OUT ARRAY DSGOSSBOBSOSOOSO~OeO*IOBO

DO 3 I1--,N,l
SL(I)zSLCI)/SMAX
QYzSY()01.OE.03
'wW=SW(I')*l.0E.C3
QCUTI=('CY-QW/2.3)/SQRT(2.0)
QCUT2= (QY.QW/2 .0 )/SQR7(2. 0)
QF=SF(:)/l.OE+09
QL=SL(I )APATRI*0.5E.03
WRI7E(LW, 109) QF, Y.QW. L.OCUTl,QCUT2.:

109 FORMAT) IX, 5 C 'F'.3,*3X ), 3X.1*
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3 CONTINUE
C

C ANALYZE THE DESIGN * * * * * * * * * * * * *~

C

JI :1
IF( CO.LT.C.O) JI=NXDAT-1
FSTARTz(SFCN).SF(l))/2.OE.09-2h49.OIDELF
!F(FSTART.LT. 2.5) FSTART:2.5
IFCFSTART.GT. 3.5) FSTART=3.5
FFmFSTART
BW=ABS(SFCN)-SF(1) )/1 .OE+09
FC=(SFCN)*SF(l))/2.OE+09
WRITE(3,444f4) FC,DELF
WRITE(3,4444) BW,BW
WRI-rECLW,20OC)

2000 FORMAT(lHl.'FREQUENCY',5X,'INSERTION',6f,'PHASE'.8X
1, 'GROUP DELAY',
26X,'REFLECTANCE',/,3X,'(GHZ)' ,7X,'LOSS CDB)',6X,'(RAD)-,1OX,

3'CNSEC)' ,BX.'MODULUS PHASE',/1)

C SAEU OFRTFEUNYT E P 0 T D '
C

DO 33 INDEX=1,NDAT,l
IF(SFREQ(INDEX).GE.FSTART) GO TO 555

33 CONTINUE
555 PHAiE(1,1)=O.O

C
C FREQUENCY ANOOSO*OSS@@IOOOOO0B10006OOO

DO 11 I=1,500,1
C
C READ IMPLANTED AND UNIMPLANTED GAMMAS STORED IN "GAMMA" FROM NEWTRYO

III=INDEX+I-l
GAMMAPzSGAMAP( III)
GAMMAI :SGAMAI CIII)
F:SFREQ(III )

C
C OBTAIN TRANSDUCER CONVERSION LOSS AT PRESENT WAVELENGTH*O*

QLAMDA22.00?I/REAL(CAMMAP)
~44 0ELWlxWAVELN(JI)-QLAMDA

DELW2=QLAMDA-WAVELN (J11
!F(DELWI .L7. 0.0) jI1:-i
rF(DELM2. LT. 0.0) 3! :41..
:F(DELWl'DELW2.LT.0.O) 007O04
TXL:TXLOSS(Ji)-DELW1'(TXLZSS(JI)-7XL0SS(4..:- )/(DEL'.WO-ELW2',

C CALULATE REFLECTANCE ',F A BAR AT THIS F E U N Y '
RHO: (GAMMAP-O;AMMAI )/ CGAMMAP .CAMMAI)
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RHOMOD=SQPTC REAL( RHO) '2.AIMAG( RHO)02
RHOANG=ATANC AIMAG (RHO) /REAL( RHO)

C

C ADD UP REFLECTIONS FROM EACH A ' ' ' ' '
R=:0.*0
DO 22 I:l.N,1
RzR.SQRT(SL(II))OCEXP(-JGAMMAPSYiI))*CSIN(AM1AP'SW('I)/2.O)

22 CONTINUE
C
C CALCULATE I.L.AND PHASE AT EACH FREQUENCY AND STORE FOR PLOTING *

R:R*2.OOJ'RHOCEXP(-J'GAMMAPOZD)
AMODSQ=ROCDNJG(R)
PHASE(1,I)2AT'AN(AIMAG(R)/REALCR))

C
C LOAD PLOTTING ARRAYS WITH DATA TO BE P O T D ' ' ' ' '

WRITE(3,44L4) R
4444~ FORMAT(2E15.8)

QIL=10.OOALOGIOCAMODSQOTXL)

OGROUP:(PHASEC1,I-1)-PHASE(1,I))/(2.OOPIODELF)
IF(QGROUP.L7. 0.0) QGROUP=TLAST
IFCQGROUP .OT.TGR:D) QGROUP=TGRID
TLAST=QGROUP
HEAD=HEAD*1 .0
!F(HEAD. EQ. 56.0) WRITECLW,2000)
IF(HEAD.EQ.56.O) HEAD=1 .0
WRITECLW,3000) F.QILPHASE(1 ,I),QGROUP,RHOMOD,RHOANG

3000 FORMAT(2X, 1F7.I,8X,iF5. 1 ,BX, 1F5.2,8X, lF8.2,7X, lF7.4.', l F7.4)
:F(ABSCF-FF).GT.DELF) 00 TO 11
FFzFF*PLTJMP
KPLOTxKPLOTeI
IL C1, KPLOT) :QIL
IF(QIL.LT.GRID) IL(I ,KPLOT)=GRID
TGROUP( 1,KPLOT):QGROUP

11 CONTINUE
WRITE(C6, 222)

222 FORMAT(!Hl)

C PLOT THE I.L. AND PHASE OF THE REFLECTION COEF:C:ENT##***'***#*
C

'4L(i 1 ):O.0

TOROUP (1 ,1) 0.0
CALL PL0TLP(FSTAR,PLTjMPIL, 1,100,1)
WRITE(6,222)
CALL PLCTL? CFSTART, PLTjMP, TORCUP , 10, 1)

END
//X.FTOAF001 DO 'lS?=SHR. ZSN=35!%KWR .3AMMA20
//X.FTC2F001 DO DiSP:SHR,DSN=B55.KWR.CNVLOS
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//X.FTO3FOOl DD DSN:5515 KWR .SDAT,
/1 01Pz(OLD,CATLG),UNIT:DISKA,
//DCB=(LRECLx30.RECFMzFB.BLKSIZEz30OOO),
//SPACE=(TRK,( 10, 10) ,RLSE)

//X SYSIN DD

&al



243

REFERENCES

(2.1) H. J. Wu, Ph.D. Dissertation, The University of Texas
at Arlington, Arlington Texas, (1978).

(2.2) R. L. Carter, C. V. Smith, Jr. and J. M. Owens,
"Magnetostatic Forward Volume Wave Spin Wave
Conversion by Etched Grating in LPE-YIG," IEEE Trans.
Mag., Mag. 16, No. 5, (September, 1980), pp. 1159-1162.

( (2.3) C. G. Sykes, J. D. Adam and J. H. Collins,
"Magnetostatic Wave Propagation in a Periodic
Structure," Applied Physics Letters, Vol. 29, No. 6,
(September 15, 1976).

(2.4) J. H. Collins, J. D. Adam and Z. M. Bardai, "One-Port
Magnetostatic Wave Resonator," Proceedings of the
IEEE, 65, (1977), pp. 1090-1092.

(2.5) J. M. Owens, C. V. Smith, E. P. Snapka, and
J. H. Collins, "Two-Port Magnetostatic Wave Resonators
Utilizing Periodic Reflective Arrays," Proc. IEEE,
CH1355-7/78/0000-0440, (1978), pp. 440-442.

(2.6) J. P. Castera, G. Volluet and P. Hartemann, "New
Configurations for Magnetostatic Wave Devices,"
Ultrasonics Symposium Proceedings, IEEE,
Cat. 80CH1602-2, Vol. 1, (1980), pp. 514-517.

(2.7) R. L. Carter, J. M. Owens, W. R. Brinlee, Y. W. Sam
and C. V. Smith, Jr., "Tunable Magnetostatic Surface
Wave Oscillator at 4 GHz," IEEE MTT-S International
Microwave Symposium, (1981), pp. 383-385.

(2.8) J. E. Mercereau and R. P. Feynman, "Physical
Conditions for Ferromagnetic Resonance," Phys. Rev.,
104, p. 63.



244

(2.9) 0. Polder, "On the Theory of Ferromagnetic Resonance,"
Philos. Mag., 40, (1949), p. 99.

(2.10) M. S. Sodha and N. C. Srivastava, "Microwave
Propagation in Ferrimagnetics," Plenum Press,
New York, (1981).

(2.11) D. Wagner, "Introduction to the Theory of Magnetism,"
Pergamon Press, Oxford, (1972).

(2.12) R. M. White, "Quantum Theory of Magnetism," McGraw-
Hill, New York, (1970).

(2.13) B. Lax and K. J. Button, "Microwave Ferrites and
Ferrimagetics," McGraw-Hill, New York, (1962).

(2.14) T. A. Gilbert, Armour Research Foundation Rept. No. 11,
ARF, Chicago, Ill., .(unpublished).

(2.15) L. 0. Landau and E. M. Lifshitz, "On the Theory of
Dispersion of Magnetic Permeability in Ferrimagnetic
Bodies," Phys. Z. Sowjetunion. (English), 8, (1935),
p. 153.

(2.16) W. H. von Aulock, "Handbook of Microwave Ferrite
Materials," Academic Press, New York, (1965).

(2.17) R. Wolfe, J. C. North, R. L. Barns, M. Robinson and
J. H. Levinstein, Appl. Phys. Lett., 19, (1971),
p. 298.

(2.18) C. H. Wilts and S. Prasad, IEEE Trans. Mag., 17,
(1981), p. 2405.

(2.19) H. A. Algra and J. M. Ropertson, "The Effects of Ion
Implantation on La, Ga: YIG Films as Observed by Spin
Wave Resonance," J. Appl. Phys., 51, 7, (July 1980),
pp. 3821-3826.

(2.20) B. E. MacNeal and V. S. Speriosu, "Modeling Strain
Distributions in Ion-implanted Magnetic Bubble
Materials," J. Appl. Phys., 52, 6, (June 1981),
pp. 3935-3940.

(2.21) V. S. Speriosu, Private Communication, Stanford
University, Palo Alto, California.

(2.22) G. Hasnain, "Magnetostatic Wave Transducer Array
Filters," MSEE Thesis, The University of Texas at
Arlington, Arlington Texas. (1980).



245

(2.23) S. Ramo, J. R. Whinnery and T. Van Duzer, "Fields and
Waves in Communication Electronics," John Wiley and
Sons, Inc., New York, (1965), pp. 344-346.

(2.24) S. A. Schelkunoff, Bell Sys. Tech. J., 17,
(Jan. 1938), pp. 17-48.

(2.25) W. R. Brinlee, "MSSW Two-Port Metal Strip Array
Resonators," MSEE Thesis, The University of Texas at
Arlington, Arlington Texas, (October, 1980).

(2.26) R. H. Tancrell and M. G. Holland, "Acoustic Surface
Wave Filters," Proc. IEEE, Vol. 59, (Mar. 1971),
pp.393-409.

(2.27) N. D. Parikh, "Beam Steering Measurements for
Magnetostatic Forward Volume Waves Using an Induction
Probe," MSEE Thesis, The University of Texas at
Arlington, Arlington Texas. (May, 1982),
pp. 43-48 (on MSSW).

(3.1) D. S. Humpherys, "The Analysis, Design, and Synthesis
of Electrical Filters," Prentice-Hall, Inc., N. J.,
(1970), Chapter 6.

(3.2) Y. Atailyan, Private Communication, The University of
Texas at Arlington, Arlington, Texas.

(3.3) K. W. Chang, J. M. Owens and R. L. Carter, "Linearly
Dispersive Time-Delay Control of Magnetostatic Surface
Waves by Variable Ground-Plane Spacing," Electronics
Letters, Vol. 19, No. 14, (July, 1983), pp. 546-547.

(3.4) C. S. Hartmann, D. T. Bell, Jr. and R. C. Rosenfeld,
"Impulse Model Design of Acoustic Surface-Wave
Filters," IEEE MTT, Vol. MTT-21, No. 4, (April 1973),

pp. 162-175.

(3.5) T. L. Szabo, K. R. Laker and E. Cohen, "Interdigital
Transducer Models: Their Impact on Filter Synthesis,"
IEEE Trans. on Sonics and Ultrasonics. Vol. SU-26,
No. 5, (September 1979), pp. 321-333.

(4.1) J. F. Gibbons, W. S. Johnson and S. W. Mylroie,
"Projected Range Statistics: Semiconductors and
Related Materials," Dowden, Hutchinson, and Ross,
Inc., (1975),.2nd Edition.

(4.2) K. W. Chang and W. Ishak, "The Effect of Width Modes
on the Performance of MSSW Resonators," IEEE
Ultrasonics Symposium Proc., (1985).



246

(5-1) H. J. Wu, Ph.D. Dissertation, The University of Texas
at Arlington, Arlington Texas, (1978).

(5.21 G. Volluet, "Unidirectional Magnetostatic Forward
Volume Wave Transducers," IEEE Trans. Mag.,
Vol. Mag-16, No. 5, (1980), pp. 1162-1164.

(6.1) G. Volluet, "Magnetostatic Forward Volume Wave
Reflective Dot Arrays," IEEE Trans. Mag., Vol. MAG.-7,
No. 6, (November 1981), pp. 2964-2966.

(6.21 G. Volluet and P. Hartemann, "Reflection of
Magnetostatic Forward Volume Waves by Ion Implanted
Gratings," IEEE Ultrasonics Symposium, Cat. 81CH1689-9,
Vol. -, (1981), pp. 394-397.

(6.31 W. L. Bongianni and J. H. Dickerman, "Sidelobe
Suppression in Surface Wave Acoustic Dispersive Delay
Lines," IEEE G-MTT 1970 Int. Microwave Symp.,
Newport Beach, Calif, (May 11-17), pp. 319-322.

(6.4) J. Burnsweig, E. H. Gregory and R. J. Wagner, "Surface
Wave Device Applications ano Component Developments,"
1970 IEEE Int. Solid State Circuits Conf., Digest of
Technical Papers, Philadelphia, Pa., (February 18-20),
p. 132.

(6.5) C. E. Cook and M. Bernfeld, "Radar Signals," New York,
Academic Press Inc., (1967).

(7.1.) Ved P. Nanda, "A New Form of Ferrite Device for Millimeter-Wave
Integrated Circuits," IEEE Trans. MTT, pp. 876-879, Nov. 1976.

(7.2.) R.M. Knox and P.P. Toulios, "Integrated Circuits for the Millimeter
through Optical Frequency Range," Proc. Symp. Submillimeter Waves,
New York, Mar. 31-Arp. 2, 198

(7.3.) W.V. McLevige, Tatsuo Itoh, and Raj Mittra, "New Waveguide
Structures for Millimeter-Wave and Optical Integrated Circuits,"
IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 788-794, Oct.
1975.

(7.4.) Klavs Solbach and Ingo Wolff, "The Electromagnetic Fields and the
Phase Constants of Dielectric Image Lines," IEEE Trans. Microwave
Theory Tech., vol. MT, pp. 266-274, Apr. 1978.



247

LIST OF SYMBOLS AND ABBREVIATIONS

Propagation Loss Factor [Nepers/Meter]

(for propagation in y-dlrection)

a,b,c a cyclic permutation of x,y,z

B Propagation Phase Factor (2w/) (Radians/Meter]
(for propagation in y-direction)

b Small Signal Magnetic Induction Field Vector

b19b2, Spacial Harmonic of the Small Signal Induction
Field Vector at frequency, f, in the region

b3,b4 {I,2,3,or4) indicated by the subscript
(see Figure 2.8)

B Total Magnetic Induction Vector

Bold Indicates a Vector

c Speed of Light in a Vacuum

CN (f) Chebyshev Polynomial of order N

~ Indicates a Complex Quantity when placed over
a symbol

Indicates the Complex Conjugate when used as
a superscript

d YIG Thickness (see Figure 2.8)

d Propagation Path between the nth element of
a phased transducer array and the receiver

antenna

d Small Signal Electric Flux Density Vector

a Vectoral Magnitude of a Step in the Gradient
step Search Method

A
= Defined as

e Small Signal Electric Field Vector

e Electronic Charge

p ~ d.P P• I pp P'
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e Magnitude of the Small Signal Electric Field
that is normal to the propagation direction

in the YIG (+/- 4 Forward/Reverse Propagating)

2-
E (xp) Square Of The Error at a Point between a desired

or target system response and a theoretical or
model response

E (p) Mean Squared Error as a function of system
parameters, p

Emab(p) Mean Absolute Error as a function of system

mabparameters, p

f Frequency [Hz]

fm Frequency Associated with the Magnetization
fm Frequency Associated with the Magnetization

ma ,bc about the a-axis, the b-axis, or the c-axis,

where ab,c = a cyclic permutation of x,y,z

f mn Frequency where llnewidth Is minimum (AH = AH mi n )

(see Figure 2.5)

f Lamor Precessional Frequency EHz)0

f oa Lamor Precessional Frequency about the a-axis,
where a = x, or y, or z

f ob Lamor Precessional Frequency about the b-axis,
where b = x, or y, or z

f oc Lamor Precessional Frequency about the c-axis,
where c = x, or y, or z

f Lossless Lamor Precessional Frequency about theoa bc a-axis, or the b-axis, or the c, axis, where

a,b,c = a cyclic permutation of x,y,z
fLossy Lamor Precessional Frequency about the
foa,b,c a-axis, or the b-axis, or the c, axis, where

a,b,c = a cyclic permutation of x,y,z

fl Frequency of the Fundamental Field Harmonic

F(f) Filter Transfer Function
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F(xp) Generalized System Response or Transfer Function
as a function of the state space, x, and the
definable parameters, p (eg., F(f,[RL,C])
would be the transfer function of a resistor,
inductor, capacitor network as a function of
the state or transform variable, frequency)

F(xm,p) System Response of Transfer Function evaluated
at a particular point In state space, x
(eg., for the one-dimensional frequencymstate
space, this would be the transfer function at
a particular frequency)

g Lande g-factor

G n(f) Transfer Characteristic for the nth array
element of a phased array assuming zero

propagation path length

y Gyromagnetic Ratio

grad(} Spacial gradient

grad-{} Gradient With Respect to p-Space

h Small Signal Magnetic Field Vector

h n nth Harmonic of the Magnetic Field Vector

h- Magnitude of the Small Signal Magnetic Field
t that is normal to the propagation direction

in the YIG ( /- * Forward/Reverse Propagating)

h-h Magnitude of the Small Signal Magnetic Field
u 1 that is normal to the propagation direction

(+/- means Forward/Reverse,
u/i means Unimplanted/Implanted transmission
line section)

hI(x,kf) Spacial Harmonic of the Small Signal Magnetic
Field Vector at frequency, f, in the region
Indicated by the subscript, i (see Figure 2.8)

h19 h2, Spacial Harmonic of the Small Signal Magnetic
Field Vector at frequency, f, In the region

M3*,h4 {I,2,3,or4) Indicated by the subscript
(see Figure 2.8)

Fi~
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H Total Magnetic Field Vector

HTotal Complex Magnetic Field

Hi(x,y,f) Spectral Harmonic of the Small Signal Magnetic
Field Vector at the point (x,y), In the region
indicated by the subscript, I (see Figure 2.8)

AH Magnetic Linewidth

AH Minimum Linewidth used in Gilbert Loss
(see Figure 2.5)

H Static Magnetic Bias Field Vector~0

H Magnitude of the Magnetic Bias Field along the
oa,b,c a-axis, or the b-axis, or the c-axis, where

a,b,c = a cyclic permutation of x,y,z

T Identity Matrix

Im{} Imaginary Part of what Is Inside ()

f Integration

J Square root of -1

J Small Signal Current Density

k Complex Dispersion Relation (0 - ja) for
MSFVW propagation along the y-axis

k Complex Dispersion Relation (0 - ja) for
MSSW propagation against the y-direction

k+ Complex Dispersion Relation (8 - ja) for
MSSW propagation in the y-direction

K (y) Sheet Current Density in the z-direction as
Z a function of y

+,(_ - Constants used in the calculation of the
reflection and transmission coefficients

(see eqn. (2.35))

t. Length of the ith Reflector measured transverse
to the array axis

t t Aperture Length of the Input Transducer

-J~I
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CI[L Transverse Field Vector on the Leading Edge of
an Implanted Reflector Zone

m Electron Magnetic Dipole Moment

m nm Magnetic Moment of the nth Electron

mn nth Harmonic of the Magnetization Vector

m Electronic Mass

M Magnetization Vector

M Complex Total Magnetization Vector

M0 Saturation Magnetization Vector0

M Magnitude of the Saturation Magnetization Vectoroa bc along the a-axis, the b-axis, or the c-axis,

where a,'b,c = a cyclic permutation of x,y,z

Mimp Saturation Magnetization in the Implanted Layer

Mpu M pu Saturation Magnetization in the Unimplanted YIG
Regions

MSBVW Magnetostatic Backward Volume Wave

MSFVW Magnetostatic Forward Volume Wave

MSQ Mean Squared

MSSW Magnetostatic Surface Wave

MSW Magnetostatic Wave

U Permeability of a Vacuum

u Complex Magnetic Permeability Tensor

u1 Diagonal Element of the Lossless Permeability
Tensor.

U1 Diagonal Element of the Complex Lossy
Permeability Tensor.

Magnitude of the Off Diagonal Element of the
Lossless Permeability Tensor.
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JU2 Off Diagonal Element of the Lossy Permeability
Tensor

p Electron Angular Momentum Vector

p Set of Designer Selectable Parameters that
the system characteristic depends upon

P 0 The ith Point in Parameter Space in an iterativesolution of the mean squared error equations

AP The Increment of the Point in Parameter Space
between the (i-I)th and ith iteration of the
mean squared error equations

Pm The mth Component of the Vector

*i(x,y,t) Complex Representation of the Time Signal thatwould be received at the point (x,y)

it 3.1415926... [radians]

RA(f) Array Reflection Transfer Function

RAF Reflective Array Filter

P(f) Reflection Coefficient for an unimplanted to
implanted zone Interface

Reflection Coefficient for positive going
(+y-direction) wave, on Interface bounded by
regions & and C, with & preceeding C
(see eqn. (2.35), subscripts assume values
u for unimplanted and I for Implanted)

P Reflection Coefficient for negative going
(-y-direction) wave, on interface bounded by
regions E and C, with c preceeding
(see eqn. (2.35). subscripts assume values
u for unimplanted and I for implanted)

Re, Re{) Real Part of what follows or is Inside {

RMS Root Mean Squared

SAW Surface Acoustic Wave

$119512' Elements of the Scattering Matrix for Normal
- ~ Incidence Arrays
$21'S22 (Scattering Parameters)
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Z Summation Series

T Torque on a magnetic dipole

T(x) Target (Desired) System Response or Transfer
Function as a function of the state or
transform variables, x

T(x m ) Target System Response evaluated at a specific

state, xm (eg., for the one-dimensional

frequency state space, this would be the
system transfer function evaluated at a
particular frequency)

TA(f) Array Transfer Function (Unapodized)
_n

TA(f) Transfer Function for the nth Subarray
or Array Strip (Apodized)

T1 ,T2, Normal Incidence Array Section Transmission
. .. ,TN  Matrices (Unapodized)

I 1
T1 T 2  M Normal Incidence Array Element Transmission

TT..Matrices (Apodized), where superscript
indicates strip and subscript Indicates

array element (see Fig. 2.14)

T1T 12, 9 Elements of the Transmission Matrix for Normal
~ ~ Incidence Arrays

T 2 1 ,T 22  (Transmission Parameters)

[TM,N] Transmission Matrix that relates the transverse
fields in the Mth array element to those in
the Nth array element

Complex Transmission Coefficient for positive
going (+y-direction) wave, on interface
bounded by regions E and C, with E preceeding
c (see eqn. (2.35), subscripts assume values
u for unimplanted and I for implanted)

Complex Transmission Coefficient for negative
going (-y-direction) wave, on interface
bounded by regions & and C, with 4 preceeding
E (see eqn. (2.35), subscripts assume values
u for unimplanted and I for implanted)

[IT Transverse Field Vector on the Trailing Edge of
an Implanted Reflector Zone



254

u Thickness of Implanted Surface Layer

u Unit Vector Along the pn Coordinate Axis
in parameter space

v Thickness of Alumina Microstrip Substrate

V Scalar Magnetic Potential

Vml Vm2' Spacial Harmonic of the Magnetic Scalar
~ ~Potential at frequency, f, in the region
V m3 Vm4 indicated by the subscript (see Figure 2.8)

AV Volume with maximum lineal dimension that is
small compared to a magnetostatic wavelength

w. Width of the ith Reflector Zone measured along
1 the array axis

w(f) Weighting Function used in the Mean Squared
Error to emphasize points where the fit is
more critical

Wm Radian Frequency associated with the
Saturation Magnetization

0Lamor Precessional Frequency [rad/sec]

v +V- Constants used in calculation of the reflection
and transmission coefficients (eqn. (2.35))

x Unit Vector along the X-Coordinate Direction

X Complex Suseptibility Tensor

Xab Element of the Complex Suseptibility Tensor from
the ath ROW and bth COLUMN

X1 (f), Transducer
Transfer Function

X2 (f) (1/2 Input/Output)

Yi Distance from the Input Transducer to the

1 Center of the ith Reflector, measured along

the array axis

y Unit Vector along the Y-Coordinate Direction

z Unit Vector along the Z-Coordinate Direction
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Gilbert Loss Factor (empirically determined
proportionality constant)

z Distance from the Array Axis to the OutputTransducer, measured normal to the array axis

z (xp) An Auxiliary Polynomial that has zeros at theextrema of the pointwise error function,

E(x,p) (see eqn. (3.4))

z (- -) An Auxiliary Polynomial that has zeros where
the pointwise error function E(x,2 )

equals some constant, E (see eqn. (3.3))

Z*(y) Wave Impedance for Forward/Reverse (+/-)
.Y , Propagating Waves

. NA A
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